AD-A124- 012

UNCLASSIFIED

USING SELECTED FEATURES OF ADA: A COLLECTION OF PAPERS

(U) BATTELLE COLUMBUS LABS OH N HABERMAN ET AL.

09 NOV 82 DAAG29-76-D-0100

i

o &
[

iy 5

2

i

22 s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

———nntry -

|

' .,

$0272-191

TREPORT DOCUMENTATION |1. REPORT No. 3. Recipient's Accession No.
PAGE , léﬂ. iy A%
4. Title and Subdtitie ’ ; & Report Dste
Using Selected Features of Ada: A Collection of Papers .9 November 1982
- . r PY
7. Author(s) : " 3. Parforming Orgsnization Rept. No.
Nico Haberman, et al S
9. Performing Organization Name and Address +v. Project/Tesk/Work Unit Neo.
USA CECOM
Center for Tactical Computer Systems (CENTACS) "11. Contract(C) or Grant(G) No.
ATTN: DRSEL-TCS-ADA-1
Fort Monmouth, N 07703 ' DAAG29-76-D-0100
1;U§WA CE’(‘:'Oﬁmnm'm Name and Address 13. Type of Report & Period Coversd
Center for Tactical Computer Systems (CENTACS) ’ Final
ATTN: DRSEL-TCS-ADA-1 ' ™
Fort Monmouth, NJ 07703 '

15. Supplementary Notes

16, Abstract (Limit: 200 words) ,

The purpose of these papers is to further the understanding of how to use selected i
features of the Ada Programming Language in a proper manner as viewed by the authors. :
Six papers are presented in this document describing the use of packages, types,
tasking, exceptions, low level language features, and real data types in the Ada
language.

17. Document Ansiysis s. Descriptors
Ada Programming Language
Ada Packages
Ada Types
Ada Exceptions

b. ldentifiers/Open-Ended Terms

2 High Level Language
Program Design Language

¢. COSAT! Fleld/Group

18 3 R . 19 Seeu Class (This Repert) 23. No. of Pages
ﬁ!‘maww Avail- | "“UNCLASSIFIED 280
able from National Technical Information Service, 2 Price

Springfield, VA 22161. = ReCRseTe TS
(Sew ANSI-T39.18) See Instrustions en Reverse OPTIONAL FORM 272 (4=
(Formerty NT1S-3%)
Departrent of Commerce

Using Selected Features of ADA:
A COLLECTION OF PAPERS

SOFTWARE TECHNOLOGY DEVELOPMENT DIVISION

¢ s
CENTACS = =]

CENTER FOR A
TACTICAL COMPUTER SYSTEMS

U. S. ARMY COMMUNICATION - ELECTRONICS COMMAND

Fort Monmouth, New Jersey

TABLE OF CONTENTS
The Use of Ada Packages by Nico Haberman R |
Types by John Nestor e e e e e e e e e e e e e e e e e e R 8!
Tutorial on Ada Tasking by Steven Shuman 171 i
Tutorial on Ada Exceptions by Steven B. Loveman e &
Low Level Langauge Features by Dewayne Perry LY
Real Data Types in Ada by Brian Wichmann e e e e e e e VI

FOREWORD

This report is a collection of papers written for the Centeftfor Tactical Computer
Systems (CENTACS) at Fort Monmouth, NJ, under Contract No. DAAG 29-76-D-0100
(Delivery Order 1534). The authors of these papers are, respectively:

Nico Haberman - Carnegie Mellon University

John Nestor

Carnegie Mellon University

Steven Shuman - Massachusetts Computer Associates, Inc.

David Loveman - Massachusetts Computer Associates, Inc.

The final two papers were provided independently by:
Dewayne Perry - Pegasus Systems
Brian Wichmann - National Physics Laboratory, UK

The purpose of these papers is to further the understanding of how to use selected
features of the Ada Programming Language in a proper manner. The viewpoints ex-
pressed in these papers are those of the authors and do not necessarily represent
the viewpoint of the Army or Department of Defense.

Copies of this report may be obtained by writing to:

HQS, CECOM

Center for Tactical Computer Systems (CENTACS)
ATTN: DRSEL-TCS-ADA-1

Fort Monmouth, NJ 07703

The Use of Ada Packages:

A. N. Habermann
CMU, 14 November 1980

Abstract

The Ada language provides a facility for separating the specification of a program module from its
implementation. The purpose of this section is to show by examples that this device greatly enhances
system design.

A

anh 14 November 1980

Table of Contents

1 Package Specifications.

2 Design by Similarity.

3 Specialization of General Packages.
4 Packages as Data Types.

Ada Packages pagei

1
3
8
1

anh 14 November 1980 Ada Packages 'page 1

Introductioh.

The Ada language provides three constructs for partitioning large programs into modules:
packages, tasks and subprograms. In this essay we will not treat subprograms as a separate
construct, because the subprogram construct is in fact nothing else than a special case of the
package construct. Normally, a package exports several functions and procedures. A subprogram is
a package that exports a single function or procedure. A package is typically used for grouping data
types and operations on objects of those types into a single unit. Tasks serve a similar purpose, but
also define the execution order of operations. In this first essay we focus our attention on the
organization of sequential programs. Tasks are discussed in a separate section in this document.

1 Package Specifications.

An Ada package consists of a visible part and, if needed, a package body, The visible part specifies

program objects such as constants, types and subprograms, while the package body describes their

implementation (see Ref.Man. Chapter 7: "Modules"). An example of a Package Specification is:

package IntegerPairs is

type pair is record xcomp . ycomp : integer; end record;

function assemble (p, q : in integer) return pair;
function "+ " (p, q: in pair) return pair;
function "-" (p. q : in pair) return pair;
function "*" {c : in integer, q : in pair) return pair;

-- this function defines scalar muitiplication of the form "scalar * pair”

end IntegerPairs;

This visible part specifies the program objects that this package provides to its surrounding scope
(see Ref.Man. Section 8.1: "scope of Declarations")._ It defines the interface of this module with other
program modules and lists the program objects that it creates and that can be used by other modules.
Type "pair” is an example of an open type, which makes the structure of objects of this type visible to
its users. The functions are specified in sufficient detail for users to write operations on pairs and
integers, but the implementation remains hidden from the users. The implementation is described in a
separate piece of program, the body of package IntegerPairs. ‘

package body integerPairs is
<< programs for funclions assemble, "+ ", "-"and "*" >>>
end InteqgerPairs;

anh 14 November 1980 Ada Packages page 2

It is not necessary that the implemetation ‘body immediately follows the visible part of a program
mocule. Placing several visible parts together has the advantage that one can oversee the structure
of an entire subsystem and the facilities provided by its various modules. Having to look at
implementations is often confusing when the overall structure of a system is the issue.

The example shows how in Ada programs the spécification of a program module is separated from
its implementation. In most other languages, a programmer is forced to interleave specifications and
implementations. and put them into a single module. Not separating the two causes problems for both
users and sSystem designers. Without the separation, a user must search through the code of a
program module and find the parts relevant to his application. In this situation it is essentially up to
the user to decide which pieces of code he should consider as specification and which pieces he
should ignore as implementation detail. Such decisions are not only error prone. but often lead to
undesirable implementation dependencies between program modules. Such dependencies are not
explicitly visible in the program text and make it therefore extremely difficult to modity programs
without introducing new errors that are very hard to discover. The strict separation of specification
and impiementation in Ada does not leave it up to the user to decide which piece of code is relevant.
The distinction is explicit in programs so that implementation details can be hidden from the users of a
program module.

For system designers the drawback of mixing specifications and implementations is that one is
inclined to go forwards and backwards between design and writing code, instead of concentrating on
one or the other. We will show in this section that in Ada system design and writing code are very
distinct activities. The natural thing to do in Ada is first to write specifications for a collection of
interrelated program modules and then to write programs that implement these separate modules at
some later time. This simple device of partitioning & module in a specification part and an
implementation body is a powerful support tool for system design.

[N Ta

a2

‘ !

anly 14 November 1980 Ada Packages page 3

2 Design by Similarity.
A common case of using package specifications is that of designing new packages by similfarity.
We discuss two ditferent ways of exploiting similarity:
1. design packages similar to an existing package;
2. design a template and introduce new packages as instantiations of that template.

Ve illustrate the ideas by introducing fractions, integer vectors and complex integers. The obvious
thing to do is to write three packages similar to the one for IntegerPairs.

package Fractions is

type fractionis record numer, denom : integer; end record;

function assemble (p. q: in integer) return fraction;
function "+ " (p, q: in fraction) return fraction;
function "-" (p, q : in fraction) return fraction;
function "*" (¢ :ininteger. q : in fraction) return fraction;

-- this function defines scalar multiplication of the form "scalar * fraction”
end Fractions;

package IntegerVectors is

type vector is record xcomp , ycomp : integer; end record;

function assembie {p, q : in integer) return vector;
function "+ " (p, g : in vector) return vector;
function "-" (p, q : in vector) return vector,;
function "*" (c : in integer, q : in vector) return vector;

-- this function defines scalar multiplication of the form "scalar * vector”
end IntegerVectors;

package Complexintegers is

type plexint is record re,im:integer; end record,

function assemble (p, q: in integer) return plexint;
. function "+ " {p. q: in plexint) return plexint
function "-" (p. q : in plexint) return plexint;
function "*" (¢ :ininteger, gq: in plexint) return plexint;

-- this function defines scalar multiplication of the form “"scalar * plexint”
end Complexintegers;

anh 14 November 1980 Ada Packages) page 4

The specification of all three packages is e)éactly the same as that of IntegerPairs. It is obvious that
the implementation of the three functions will be the same as that of IntegerPairs for packages
IntegerVector and Complexintegers, but not for Fractions. In the latter case addition and subtraction
should not be applied component-wise, while scalar muitiplication should have an effect on the
numerator, but not on the denominator. IntegerVectors and Complexintegers can both use the scalar
multiplication of IntegerPairs which muitiplies both components of a pair or vector or complex
number. In case the specification and implementation are the same (as is the case for IntegerPairs,
integeiVectors and Complexintegers) there is no need to write three separate packages. !f package
IntegerPairs has been defined, all that is needed instead of two new packages is the pair of
declarations: \

type IntegerVector is new pair; '
type Complexinteger is new pair,
This declara“._~ validates the operations defined in. package IntegerPairs also for objects of type
Integer/ector and of type Complexinteger (see Ref.Man. 3.4 "Derived Type Definitions”). For

example,

dactare x. y: Complexinteger:

p. q: pair;
begin

x : = assemble(3, 4);

y:=2°*x + 3°assemble(5, 12);

p : = assemble(3, 4);

- Q:= p + X: isincorrect => type violation.
end;

Note that one can derive one type from the other if and only if the operations defined for those types
are similar in the parameters they use and also in the way they work. Derived types not only use the
same specifications, but also the same implementations. The example of Fractions serves the
purpose of showing that packages may have similar specifications (have similar visible parts), but
cannot be derived from one another because of the different implementations (that must be written as
different package bodies). Packages IntegerPairs, IntegerVectors and Complexintegers can share a
common implementation body, but that of Fractions is not the same.

anh 14 November 1980 Ada Puckages ' page5

Instead of deriving IntegerVectors and Comlplexintegers from package integerPairs, one can first
define a package tempiate that contains all the common elements of IntegerPairs, Complexintegers
and IntegerVectors. The three packages can then be defined as instantiations of this template.

A package template is defined by a generic package which has the same format as an ordinary
package except for a prefixed generic clause (see Ref.Man. 12.1. "Example of a generic package
declaration”). A generic clause is frequently used to introduce a forinal type parameter. This is
particularly us2ful if one wants to write a piece of program that should work for a variety of types. A
well-known example is that of a "stack " for which one defines the operations "push” and "pop”. One
would like to define a stack package independent of the stack element type so that one can introduce
stacks of reals, stacks of records or stacks of access variables without having to rewrite the code for

"push” and "pop” (see Ref.Man. 12.4).

We try to capture the commonality of IntegerPairs, IntegerVectors and Complex!ntegers by defining
a ganeric package "Pairs”. The following definition is a first step in that direction, although the

generic specification is not complete.

generic type comp is private: -- this generic clause is incomplete
package Pairs is

type pair is record xccord, ycoord : comp; end record;

function assemble (p.q:in comp) return pair;
function "+ " (p. q: in pair) return pair;
function "-" (p, g in pair) return pair;
function "*" (c:in comp, q. in pair) return pair;

-- this function defines scalar multiplication of the form "scalar * pair"
end Pairs:

The qualification private in the formal type definition means that the user can supply any structured
type he wants and that the generic package will not assume any particular structure. The generic
package will treat formal type "comp” and objects of that typ~ as a black box. This implies a
restriction for the generic package in that it cannot directly access the structure of objects of the
formal type. That excludes ai aray or record access to those objects in the code of the generic
nackage.

T AT

. 1

anh 14 Movember 1980 Ada Packages page 6

The information that is missing in the generic clause has to do with operations that can be performed
on objects of the formal type "comp”. When the functions "+ ", "-" and """ are implemented, their
code uses the fact that elements of pairs can be added, subtracted and multiplied. It must be clear to
users of the generic package that the actual type he supplies when he uses the generic package must
be one tor which addition. subtraction and multiplication are defined. It would for instance make no
sense to use type "stack" as the actual type for "comp”, because addition, subtraction and scalar
multiplication do not make sense for stacks. The correct definition of generic package "Pairs” in Ada
is:

generic type comp is private;
with tunction " + " (comp, comp) return comp;
with function “-" (comp, comp) return comp;
with function " *" {(comp. comp) return comp;

package Pairs is

type pair is record xcoord, ycoord : comp; end record;

function assembie (p. q:incomp) relurn pair;
function "+ " (p. q : in pair) return pair,
function "-" (p. q:in pair) return pair;
function "*" (¢ :incomp. q:in pair) return pair;

-- this function defines scaiar multipfication of the form "scalar * pair"
end Pairs;

Generic package "Pairs” can be used to define IntegerPairs, two-dimensional vectors and complex
numbers. The use of a generic package has the additional advantage that we can define vectors of
various component types if we want to.

package IntegerPairs is new Pairs (comp is integer);
package Vectors is new Pairs (comp is digits 7);
package Complex is new Pairs (comp is digits 9),
package ComplexVectors is new Pairs (comp is Complex.pair);

The latter defines two dimensicnal vectors cf complex numbers. Note that "pair" as declared in
package Pairs by itself is not a type. but a template for a type. When package Pairs is instantiated.
as in the definitions above. a new type 1s created by making a copy of the declared template. The four
dgzfinions above intrcduce four distinct types: IntegerPairs.pair, Vectors.pair, Complex.pair and
ComplexVectors.pair.

. da

1 %

/

anh 14 Ncvember 1980 Ada Packages page7

Other operations on these types of objects can be defined in additional packages. For example,

package ComplexOps is

use Complex;

function (p. q:in patir) return digits 9 -- inner product
function modulus (p : in pair) return digits 9;

end ComplexOps;

The name pair in this example means Complex.pair, the type that is defined as part of package
Complex (see Ref. Man. Section 8.4 "Use Clauses™).

Note that, again. a package Fractions cannot be defined with what we now have. The same
croblem arises as before because of the ditterent implementations needed for the operations cn
fractions. A generic package body satisfying the nevds of complex numbers and vectors does not
provide the correct implementation for fractions. No matter how similar the specifications, it is

necessary to define a separate package for Fractions.
package fractions is

type fraction is record numer, denom : integer; end record,

function assemble (a.b : in integer) return fraction;
function "+ " (p. q :in fraction) return fraction;
function "-" (p. q: in fraction) return fraction;
function "*" (p. g : in fraction) return fraction;

function recip (p : in fraction) return fraction;
end Fractions; .
package body Fractions is
<<<implementation of " + ", "-", "*" assemble and recip for fractions>>>
end Fractions;
The examples of this section show that one can go through a fair amount of design without
considering implementation details. It is typical for a designer to come up with an initial design and

then consider revisions according to the insight gained by doing the initial work. This section
demonstrated the use of package specifications for expressing such design decisions.

B o ST - -t

anh 14 November 1980 Ada Packages page 8

3 Specialization of General Packages.

Another common case is that of designing special versions of a given package. If the latter
provides a collection of primitive types and basic operations, its application may be inconvenient and
cumbersome in specific cases. it is for instance undesirable to force users to make use of general file
facilities for terminat 1/0O. It is customary that the programming environment automatically creates
access to screen and keyboard without requiring the user to open files for these devices. The
programming environment also makes it unnecessary for users to indicate in every read or write
operation that screen or keyboard is used as 1/0 device. One expects to find special versions for
reading the keyboard and writing the screen. The purpose of this section is to show the use of Ada
packages for introducing specialized versions of a given set of primitive facilities.

The goal of the following exercise is to design special versions of a general mailing system. Letus
assume that messages are defined by a package MSG:

package MSG is

subtype amount is integer range 0..integer'last;

type content(size : amount); -- incomplete type declaration
type message is access content;

type content(size : amount) is

record
sender : string(1..12);
date : string(1..8);
text : string(1 . . size);
next . message;
end record;

end MSG;

The need for an incomplete type declaration is explained in Ref. Man. 3.8, "Access Types".
Messages can be created dynamically by assigning the designator returned by allocator "new
content(something)” to a variable of type message. For example, a collection of five messages of
equal size is generated by the subprogram:

declare x:message:= new content(120);
begin
for q in 1..4 loop
x.next: = new content(120); x:= x.next;
end loop;

end;

snh 14 November 1880 Ada Packages page 9

A general mail facility is described by the visible part of package MailSystem:

package MailSystem 1s
use MSG;

type mailbox is private;

procedure deposit (m : in message: box : inout mailbox);

-- add new last message to box
procedure rcceive (m: out message,; bex : inout mailbox),

-- take first message out of box '
procedure clear (date : in string: box : inout mailbox);

-- remove all messages up to "date”
procedure remove (sender : in string; bex : inout maitbox);
-- remove all messages from "sender"

function boxsize (box : in matibox) return MSG.amount;
function fookup (sender :in ; box : in mailbox) return mailbox;
-- duplicate all messages from user in new box

private
. type mailbox is record first, last : MCG.message: end record;

end MailSystem:
The first special function is one for a mail system defined for a static number of users. Each user has
exactly one mailbox which exists as long as the user wants. Since every user has a unique mailbox. it
is no tonger necessary to address a particular mailbox. A user/D can be used instead. The package
body of the special version we are designing manages an array of mailbexes and selects a particular
mailbox by using a userlD as index. (The example is somewhat simplistic, because no protection is
built in against users that make unauthorized use of somebody else’s useriD.)

package StandardMail is
use MSG;

maxuser : constant : = 81,
type userlD is new integer range 0. . maxuser,;

function get.D return useriD;

procedure releaselD (x : in userlD);

procedure deposit (m : in message: user: in user!D);

function receive (owner : in useriD} return message;

: procedure clear (date : in string; owner : in user!D);

function mesnum {user : in user!|D]) return amount,
N function lookup (owner, user : in userlD) return message;

function nextmsg (m :in message; owner : in userlD) return message,;

end StangardMail;

i L T .— e i . P C it VRO . e

‘. ' ! l

anh 14 November 1980 Ada Packages page 10

Another example of a special application is that of a “suggestion box" used for collecting ideas from
employees for improving the working environment or general operations. In this case the package
body of the épecial version we are designing declares only one unique mailbox which it manages
internally. (The package provides a procedure for deleting messages from the suggestion box. We

assume that the management of the company will take care that this procedure is not misused.)

package SuggestionBox is
use MSG; .

type suggestion is new message;

procedure suggest . {m : in suggestion); .
procedure delete (date : in string);

function lirstsuggestion return suggestion;

function nextsuggestion (m : in suggestion) return suggestion;

end SuggestionBox;

The new type suggestion has been derived from type MSG.message. The mechanism of derived
types is explained in Ref.Man. 3.4. It is used in this example to remind the user that he is handling an
object that came from - or that will be sent to - the SuggestionBox.

One can think of other special applications such as UNIX pipes. a personal appointments calendar,
etc. The point of the exercise was to demonstrate the use of packages as a tool for specifying special
applications of a general facility. Using packages, one can easily create modified versions of given
faclilities and hide irrelevant details.

anh 14 November 1980 Ada Packages page 11

4 Packages as Data Types.

Packages are often used for introducing a data type and the set of operations tr.at apply to objects
of that type. Al packages discussed <. far do exactly that. This section shows that in some cases the

package definition itself can serve as the defimition of a data type.

Ada distinguishes three classes of types: open types. private types and limited private types. The
latter two restrict the access to objects of such a type in certain ways. What all three have in common
is that users can apply the operations that are defined in the visible part containing the type
declaration. The differences are in structure access operations, such as array access and record
field access, and in assignment or equality tests.

Open types are those whose structure is displéyed in the visible part of a package. An example is
type message in package MSG (Section 3.) A user of the type has access to the structure and can
apply record or array access operations to objects of that type (whichever is appropriate).
Assignment and equality tests are also allowed for open types.

Private types hide their structure from users (see Ref.Man 7.4.1). An example ot a private type is
type MailBox in package MailSystem (see Section 3). iIn this case a user cannot apply structure
access operations, but assignmem and equality tests are allowed.

" Limited private types behave like private types in that structure access operations are not permitted
to objects of such a type. Im addition. assignment and equality tests are also not permitted. Examples-
of types for which such restricticns make sense are Stack, Queue, Buffer, etc. In each of these cases
it makes little sense to overwrite one of those objects with the content of another one (of the same
type). The concept of limited private type is introduced in Ref.Man, 7.4.2.

In the case of a limited private type one can often omit the type definition entirely and define a
generic package instead that plays the role of a limited private type. The point is illustrated by
designing a package for queues. The operations typically defined for queues are ENQ and DEQ,
which make it possible to put items into a queue at one end and take items out at the other end. We
first Jook at a package QUE that contains an explicit type declaration for queues, and then at one :

that contains no explicit type declaration for queues.

‘I
« s

anh 14 November 1980 Ada Packages page 12

With an explicit type declaration for queues, the definition of package QUE looks like this:
generic
qsize : integer range 1. . 64;
type T is private;
package QUE is

type queue is limited private;

procedure ENQ (item:in T: g : inout queue);
procedure DEQ (item : out T; q : inout queue);

private
type queue is
record
content: array (1..qgsize)of T;
front, size : integer range 0. . gsize := 0;
end record;
end QUE,

it is cbvious that one wants to define package QUE as a generic package so that one can declare
queues of different sizes and queues containing elements of various types. Note the different »
meaning of the keyword private in three places. In the generic clause it means that package QUE will
not make assumptions about type T and will not access the structure of objects of type T.in the
declaration of type queue it means that users of package QUE cannot access the structure of
queues. The private section at the end of the visible part displays the implementation of type queue
to an Ada compiler (see Ref.Man.7.2 "Package Specifications and Declarations™).

Instead of declaring type queue explicitly. we now define that type implicitly as part of the definition
of package QUE.
generic
qsize : integer range 1. . 64;
type T is private;
package QUE is

procedure ENQ (item:inT);
function DEQ return T;

end QUE;

anh 14 November 1980 Ada Packages page 13

The package body of QUE contains locai declarations for the queue body and for the variables that
keep track of the front and the size of the queue.
package body QUE is

front, size : integer range 0..qsize:= O;
qbody : array (1..qgsize)of T;

procedure ENQ s eeeeeeaaan end ENQ;
tunction DEQ is 000 eeemeca-o-- end DEQ;
end QUE,

It a user wants to create a queue of a particular size for a particular type of elements (for complex
numbers for insiance). he writes in his program the declaration:
package PlexQue is new QUE(qgsize => 36, T => Complex.pair);
There may be many similar declarations in a program that each introduce a new queue. Operations
on the example queue are denoted by "PlexQue ENQ(u)" and "PlexQue.DEQ", where "u" is a
variable or expression of type Complex. A similar example is found in Ref.Man. 12.4.

It is a good idea to define a type implicitly through a package if one wants to generate isolated
objects that are not used in conjunction with one another. One should realize that generic packages
are somewhat more restricted than limited private types, because instances of packages cannot be
passed as parameters to subprograms. The fact that such basic operations as assignment and
equality tests are not permitted for limited private types implies that one is probably also not interested
in passing objects of limited type as parameters. Stacks, queues, puffers and the like are typical
examples of objects for which definition as a generic package is appropriate. Complex numbers, and
in general objects that are treated as part of collections, should not be defined as instantiations of a
generic package. It would not be possible to write operations on complex numbers that use
parameters of type complex. Limited private types form a class of types for which passing objects of
such a type as parameters is often unnecessary. The objects themselves are hardly manipulated in
their entirety, which is the main reason for not permitting assignment and equality tests. In this case
objects are often used in isolation from one another. so an implicit type definition through a package

makes sense.

TYPES

by

John Nestor

Table of Contents

1. Types

1.1 Type Structure
1.1.1 Objects, Types, and Subtypes
1.1.2 Naming
1.2 Abstract Types
1.2.1 Representation Hiding
1.2.2 Kinds of Abstraction
1.2.3 Derived Types
1.3 Type Composition
1.3.1 Type Parameters
1 ‘ 1.3.2 Generic Types

o L T e i R e e

sl it st ISR

*_..._-,—_,.,,.._..,..,,,__ﬁ,,,
.

1. Types

This essay discusses a central part of the Ada languags: its type system. The type system controls
all data declaration and manipulation in Ada, and a reasonably complete understanding of it is
necessary for all programmers who use Ada. The discussion is divided into three sections. Section
1.1 discusses the basic Ada rules for data and types. Section 1.2 considers how programs can be
modularized using the abstract type concept. Section 1.3 discusses some techniques that can be
used to generalize type definitions so that types can be composed to form other types. Throughout
the discussion suggastions are made on how to use Ada types in an effective manner. A key part of
this is the presentation of techniques for producing maintainable and machine-independent
programs.

1.1 Type Structure

The major purpose of types is to structure data within a program and to enforce properties that
ensure the consistency of that data.

1.1.1 Objects, Types, and Subtypes

The basic unit of data in Ada is an object. Variabies, constants, and formal parameters (whern
bound to actual parameters during a call) are ail objects. Each cbject has a set of properties that
control what values the cbject may have and what operations ¢ 2n be applied to the object. A major
purpose of these properties is to enforce consistent use of the object by means of appropriate
checking. Some properties are determined at compile time (that is, they are completely checked
during the compilation process). while other properties are determined at run time (that is, they are
checked only when a section of code that depends upon them is actually executed). A run time check
that succeeds during one execution of the code section may fail during some other execution in
which the objects have different values.

The properties that an object has are its type, its subtype, and its value. These properties differ in
the time at which they are determined. The type of an object is determined at compile time. It
controls the general structure of the values that an object car have. For example, the type states
whether an object can have boolean values. or integer values, or some specific kind of structured
value. The type is used for such compile time coperations as type checking and overload resolution.
The subtype of an object is determined when trie object is created at run time. The subtype of an
object consists of its type tocjether with a set of constraints that are specitic to the type. The
constraints of the subtype cf an object serve to further limit the permitted values; however, in this case
the limits can depend ugcn run time computations. For example, the range constraint of an integer

R - e e .
i anittiebiotiiohininnt, snbin i

I ——

subtype limits the values of objects with that subtype to some run time determined contiguous finite
range of integer values. An array subtype includes an index constraint which determines the number

of elements in the array. Finally, each object has a value which can, in general, be changed by i
assignment anytime during the lifetime of the object.]

Since, in general, there will be several objects that share the ‘same type and/or subtype, the
!‘ language provides declarations for both types and subtypes that cen then be referenced in other
' . declarations. For example

type Int is range -1024..1024;

subtype NInt is Int range 0 ..1024;

11,12: Int;
N: NInt;

in some cases, the Ada type declaration is actual!y used to declare not only a type, but a/ao a
[subtype. For example

type Bit10 is array (Int range 1..10) of boolean;
is actually equivalent to

type Bit10T 1s array (Int ranga O) of boo'lean.
subtype Bit10 is Bit10T(1..10); '

" where Bit1CT is a compiler generated name distinct from all other names that appear in the program.

4 When using the type decl!aration in this way the user should be careful to understand which of the
constraint-like specifications are part of the type and which are part of the subtype. For example the

: user can write

-) typo Bit_I_J 1is array (Int range I1..3) of boolean- R . | .

; where | and J are variables with type Int. This is permitted because here the range is part of the'

subtype. However the user may not write

type I_J 1s range I..J: ~- This is illegal)
where | and J are again Int variables. This is illegal because the range here determmes the type and
must therefore be known at compile time. It would be ideal if it were aiways possibie for the user to
use the type declaration only to create types; however, this is not always possible. For example

type Vectord is array (Int range 1..3) of Int range 0..100;

V3: Vectord;

- . defines both a type and a subtype, but here there is no way to rewrite this as a type declaration that

' declares only a type and a subtype declaration that specifies the constraints. The reason for this is

that given an array type there is no way to specify further subtype constraints that apply to the array

element type. When this form is used, only a single subtype of the declared type can ever be used,

* because there is no way to refer to other subtypes or to the type itself. Further problents can arise /
because the subtype of an array slice, such as V3(2..3), can not be referenced. When more that one

2/

subtype of the type is needed in these cases, then the techniques discussed in the subsection on
parameterized types can sometimes be used.

The subtype declaration can also be used to further constrain a previously declared subtype.

subtype T1 is Int range 0..100;
subtype T2 is T1 range 1..100;

This technique should only be used when T2 is logically relat~-d to T1 (via some further constraint).
When this is not true, then it would be better to write

subtype T1 is Int range 0..100;
subtype T2 is Int range 1..100;

When this form is used, changes to T1 will have no effect on T2.

1.1.2 Naming

In Ada, all types are named. Most types are named by the user, but there are also anonymous types
whose names are assigned by the compiler. Type naming is the basis of the Ada type equivalence
rules. Two types are equivalient if and only if they have the same name. The major use of type
equivalence is in type checking, which occurs during compilation. A vaiue of an object can be
assigned to some other object only if the two objects have equivalent types, or more simply if the
types have the same name. Similarly an actual parameter can only be passed to a formal parameter
with an equivaient type.

Type equivalence also plays a key role in the overloading of subprograms. Overloading is permitted
for two procedures (or functions) with the same name and with the same number of parameters if the
types of at least one pair of corresponding formal parameters (or for functions result types) are not
equivalent.

The type declaration serves to introduce a new named type. In the case of composite types, each
component type (including the index type for arrays) should have a separate type declaration. For
example

2

type 110 is range 1..10;
subtype Index is Int I..J;
type R is record
X,Y: I10;
end record;
type P is access R;

typs A is array (Indsex) of P;

VR1,VR2: A;
K: Index;

When components are now selected. they will each have a type whose name has been declared.

VR1 -~ has type A

VR1(K) -- has type P '
VR1(K).al1 -- has type R

VR1(K).X -- has type I10

Because each component type is named. it will be possible to declare a variable which can hgld any
component value and it wiil be possible to pass any component as a parameter.

It is also possible to have anonymous types whose type name is assigned by the compiler. Each
anonymous type is different from all other types. whether user named or anonymous. Anonymous
types should normally be avoided, since they will severely restrict what can be done with objects or
components that have that type. For example

Anon: array (Index) of boolean; -- Bad programming style
Here it will not be possible to pass Anon as a parameter since its type can naot be referenced by the
user. Even it the object is never passed as a parameter, anonymous types should still be avoided.
This will avoid difficulties when the program is modified and the programm.er discovers that an object
with an anonymous type then needs to be passed as a parameter.

Although in most cases anonymous types should be avoided, there are two places where they can
reasonably be used. The first place has already been discussed. Recall the example
type Vectord 1s array (Int range 1..3) of Int range 0..100;
which declared both a type and its only subtype. In this case the type name is anonymous; however
this causes no problems since there is a name by whizin the only subtype of that type that is ever used
can be referenced. The other place where anonymous types are needed is discussed in the
subsection on parameterized types.

1.2 Abstract Types

As was discussed in the chapter on program structure, packages are a key tool for achieving

program modularity. In this section the use of packages to procuce abstract types is considered. As
a basis for discussion the following abstract type will be used. Various techniques used in this

example will be discussed throughout this and later sections.

package Stacks 1is

type StackSizeT is range 0..10000;
StackMax: constant StackSizeT:= 100;

exception Overflow,Underflow,Post_failure;

type ElemT is range -100..100;
type Stack is limited private;

procedure Init(S: out Stack);

procedure Push(S: in out Stack:I:
-- can raise Overflow

in ElemT);

procedure Pop(S: in out Stack);
-- can raise Underflow

function Top(S: 1ﬁAStack) return ElemT;
-- can raise Underflow

procedure Final(S: in out Stack);
-~ can raise Post_Failure

private

type ElemArray is array(StackSizeT range 1..StackMax) of ElemT;
type Stack is record

Top: StackSizeT range 0..StackMax;

Elems: ElemArray:

end record;

end Stacks;

package body Stacks 1s

procedure Inft(S: out Stack);
begin
S.Top:= 0;

end Init;

procedure Push(S: in cut Stack;I: in ElemT);
begin

if S.Top = StackMax then

raise Overflow;

end 1if;

S.Top:= S.Top + 1;

S.Elems(S.Top):= I;
end Push;

procedure Pop(S: 1in out Stack);
begin
if S.Top = 0 then
raise Underflow;
end if;
S.Top:= S.Top - 1;
end Pop;

function Top(S: in Stack) return ElemT;
begin
if S.Top = 0 then
raise Underflow;
end 1if;
return S.Elems(S.Top):
end Top;

procedure Final(S: in out Stack):;
begin :
if S.Top /= Q then
raise Post_Failure;
end if;
end Final;

end Stacks;
Note that the visible part includes, as comments, information about which exceptions can be raised by
each visible subprogram. It is also usually desirabte to include a comment with each visible
declaration that describes its use (i.e. for a subprograms this comment would describe its eftect when
called).

in this example there are two special visible procedures, Init and Final, which are to be called
explicitly by the user at the beginning and end of the lifetime of any Stack object. For example

B ¥ P - . .- e g Bt iz R N

— e e e - - 2 m—————

declare
S: Stack;
begin
Init(S):
eee -~ A1) other uses of S occur here
Final(s)
end

The Init procedure serves to establish any needed preconditions for S (i.e. it makes sure that S is
initially in a consistent and useful state). The Final procedure is used to check any desired
postconditions (i.e it ensures that S has been left in a reasonable state) and in some cases to do
various clean-up operations just before the end of the iifetime of S.

One problem with both Init and Final is that the user must always remember to call them explicitly at
the beginning and end of the lifetime of any stack object. If the user forgets to make these calls, then
unexpected behavior may resuit. In the case of Init it is possible to ensure that it is automatically
called whenever a Stack object is declared (unfortunately there is no way to cause Final to be
automatically called). This can be done most simply by deleting the init routine and changing the
Stack type declaration to be

type Stack is record
Top: StackSizeT range 1..StackMax:=0;
Elems: ElemArray;
end record;

Although this approach works for Stack, there are abstract types that require more general
initialization than can be achieved via the simpi2 initialization of record components. In this case a
more powerful (and unfortunately less efficient) approach must be used. Using the original Stack
example as a starting point three changes are needed. First, the Stack type declaration is changed to
be

type Stack is record
Initialized: boolean:= false;
Top: StackSizeT range 1..StackMax;
Elems: ElemArray;
end record;

Second, the specification of Init is removed from the visible part and in the body part it is changed to
be
procedure Init(S: 1n out Stack);
begin
if not S.Initialized then
S.Initialized:= true;
S.Top:= 0; -- Arbitrary initialization code can go here
end 1f;
end Init;
Finally, a call to Init is placed as the first statement in the body of the Push. Pop. Top. and Final
subprograms. The lirst of these calls to done will do the initialization, while in later calls the if test in

Init will fail.

1.2.1 Representation Hiding

One of the most important characteristics of abstract types is that their representation is hidden.
This means that users of the abstract type need not understand irrelevant representational details.
Even more important the representation of an abstract type can be changed providing its abstract
hehavior remains unchanged. Since changing the representation of a data structure is one of the
most frequent kinds of program changes that are made to improve program performance,
representation hiding becomes crucial to program maintenance. The main tool for the hiding of
representations is private types. All abstract types should be private. This hides most
representational details: however, the automatically defined assignment and equality routines for a
private type can allow certain aspects of the representation to be visible to users of the abstract type.
This can be seen by comparing a stack with an array representation with another stack that uses a
linked list representation. The automatically supplied assignment for an array will copy the array while
the automatically supplied assignment for the linked list will copy only the pointer to the start of the
list. The user can now detect the difference in representation as shown here:

§1,82:Stack;

Push(S1,1);
Push(S2,2);
S1 := S2; ~- here 1s where the problem happens!
Push(S1,3);
if Top(S2) = 3 then
-~ pointer assignment
- else
-- copy assignment
end if;

Similar-detection of representation is also possible by using the automatically supplied equality. One
way to avoid this problem is to make all abstract types be limited private. Since assignment and
equality are not automatically provided in this case, all representational details are hidden. Another
approach that will also work is to always use an access type as the top level of the representation of
an abstract type. However, there is extra overhead associated with this use of pointers and pointers
will severely limit the optimizations that most Ada compilers will be able to detect: therefore. this
approach is not recommended. The example below shows how Stack can be changed to use a linked
list rather than an array representation. This example is abstractly equivalent to the original Stack

example.

with UncheckedDeallocation;
package Stacks 1is

type Stack is limited privats;

type StackSizeT is range 0..10000;
StackMax: constant StackSizeT:= 100;

exception Overflow,Underflow,Post_Failurse;

type ElemT is range -100..100;
type Stack is 1imited private;

procedure Init(S: out Stack):

procedure Push(S: in out Stack;I: in ElemT);
-~ can raise Overflow

procedure Pop(S: in out Stack);
-- can raise Underfiow

function Top(S: in Stack) return ElemT;
-- can raise Underflow

procedure Final(S: in out Stack);
-- can raise Post_Failure

private
type ItemT;
type ItemPtr is access ItemT:
type ItemT is record
val: ElemT
Next: ItemPtr;
end record;
type Stack is record
Top: StackSizeT range 0..StackMax;:
Elems: ItemPtr;
end record;

end Stacks;

- - - . - ——— —— e —

i e e s o b e e s oot et —— -

procedure Free 1s new UncheckedDeallocation(ItemT,ItemPtr);
package body Stacks is

procedurs Init(S: out Stack):
begin

S.Top:= 0;

S.Elems:= null;
end Init;

procedure Push(S: in out Stack;I: in ElemT);
begin

if S.Top = StackMax then

raise Overflow;

end if;

S.Top:= S.Top + 1;

S.Elems:= new ElemPtr(I,null);
end Push;

procedure Pop(S: in out Stack);
P: ItemPtr;

beg'in !

if S.Top = 0 then 3
raise Underflow; N

end if: '
P:= S.Elems; ' ;
S.Elems:= P.Next; '
Free(P):
S.Tog:= S.Top -~ 1;

end Pop:

function Top(S: 1in Stack) return ElemT;
begin
it S.Top = 0 then
raise Underflow;
end if;
return S.Elems.Val;
end Pop;

procedure Free_ItemPtr(P: in ItemPtr)
begin
it P /= null then
Free_ItamPtr(P.Next);
Free(P);
end 1f;
end Free_ItemPtr

10

F procedure Final(S: in out Stack);
. begin
L Free_ItemPir(S.Elems);
it S.Top /= 0 then
raise Post_Failure;
end if;
end Final;

end Stacks;
This example makes use of a Free procedure that explicitly frees the heap space used by the heap
object pointed to by its parameter. Notice here how the Final procedure is used to ensure that all
heap objects associated with the stack have been freed.

1.2.2 Kinds of Abstraction

This section discusses a useful classification scheme that can be used to decide among several
package forms that can be used to structure data. The classification is based on the state information
associated with the objects that can be derived from the package.

1. Subprogram libraries - Here the package contains only subprograms but not object or
type declarations. Such libraries have no associated state.

2. Abstract objects - Here the package can contain both objects and subprcgrams but not
types. The package can itself can be thought of as an “"object" whose state is
represented by the values of the objects it contains. As is the case for abstract types the
representation of the objects within the package can be hidden. An abstract object is a
good alternative to an abstract type when only one object with the type is ever created in
the programs. This will frequently happen when large single instance tables are used.
The abstract object is normally more efficient than an abstract type since the "object” is
contained entirely within the package and need not be passed to each subprogram as a
parameter.

3. Abstract types - Here the package can contain types and subprograms but not objects.
Multiple abstract objects are created by using the visible type in multiple object
declarations outside the package. The previous Stack examples illustrate this case.
Another approach to multipte abstract objects is to instantiate a generic abstract object
package multiple times. This approach is not recommended since the resulting object
instances do not have a type and therefore can not be passed as parameters.

- Related abstract types - When there are two (or more) related abstract types it is often
useful to declare them vathin a single package. This allows both representations to be
hidden from users. but at the same time routines in the package with parameters of both
types can have access in therr implementation to the representation of both types.

®

It is also sometimes useful to use some combination of the above techniques. For example, a
package that contains objects, types. and subprograms is used in programs that need to mix the
abstract object technique with the abstract type technique.

1.2.3 Derived Types

Derived types permit a new type to be derived frcm an existing type. The new type "inherits" the
operations of the existing type. As a general rule derived types are not needed and should not be
used.

There is however one place where the use of derived types is necessary. A type declaration of the
form
type Int 1is range -1024,.1024;
is actually equivalent to

type IntT is built_in_integser;
subtype Int is IntT range -1024..1024;

where IntT is an anonymous type and built in_integer is one of the implementation defined integer
types that is large enough to hold values in the range -1024..1024. Although the particular type
selected is implementation dependent. the resulting subtype is implementation independent. This
implementation independence is the reason why the use of derived types is necessary for all numeric

types.

The only alternative to the use ol derived types, is to use one of the built-in integer types. This must
be avoided if transportability is desired, since the maximum range of these types can vary from one
target machine to another (or even within ditferent implementations for a single target machine). As
an exampie of what to avoid, the type integer should never be used in a program.

type R is record
X,Y: integer; -~ Bad programming style
end record;

A more subtle use of the integer type appears in

type A is array (1..10) of boolean; -- Bad programming style
Here the index type of the array will default to integer and the program will be machine dependent.
This is the reason why array index types should always be user declared.

There is a strong temptation to use the integer type for those integer variables where no range is -
obvious. A better approach is to declare
type my_integer is range -2%*15..2°**15-1;
The range should be selected to be sufficiently targe'to hold the largest expected integer value but
also small enough to be supported by all Ada implementations of interest. Unlike programs that use
the integer type, programs that use the my_integer type will be machine-independent.

[
‘
2
i

L a2 ST S]

12

1 1.3 Type Composition

This section discusses two techniques, type parameters and generic types, that can be used to
generalize a type declaration so that parameters can be used to procuce multiple related types at
compile time and to produce multiple related subtypes at run time.

1.3.1 Type Parameters

Type parameters are a technique that can be used to separate the declaration of a type from the
declaration of its subtypes. The Ada language provides several facilities which when used correctly
will, in some cases, give the eftect of parameterization of subtype constraints through an arbitrary
number of structural levels. The following example illustrates each of these facilities.

type 110 is range -10..10;

subtype PI10 is I10 range 0..10;

type R(I:PI10) is record
case I 1is
i when 0..56 =>
X: I10 range 0..6;
when 65..10 =
Y: 110 range 6..10;
end case;
eénd record;

type A 1s access R;
type V(J:PI110) is record

Y: array (PI10 range 0..J) of A(J):
end record;

type R1(K:PI10) is record
T.U: V(K);
end record;

val: PI10;
Vi: R1(6);
Vi: Ri(val);

There are four basic techniques that are used to achieve parameterization here:

1. Range and accuracy constraints - These constraints serve as the parameterization

technique for scalar types. It is not possitle to control these constraints through muitiple

structural levels. For example when an integer subtype appears as a component of a

* record, then the range of this subtype must be specified when the record is declared and
. can not depend upon the discriminant parameters of the record.

2. Discriminants - This parameterization technique can only be used for records. !n this
case the formai parameters appear explicitly, as a discriminant of the record.

18

3. Constraint inheritance - This parameterization technique is used for access types. Any
parameters of the underlying type are "inherited” by the access type.

4. Anonymous arrays used with discriminants - This technique is used for arrays. Here the
array is embedded as the only component of a record with a discriminant. In this case the
array type is anonymous: however. this causes no problems since the enclosing record

1 type can be used as th= effective type for the array. In the above example the user should
use the object V1.T which has type V rather than the object V1.T.Y which has an
anonymous type to refer to the entire array. When this technique is used. slices of the
array will have an anonymous type and should be avoided. Note that index constraints
can be used instead when parameterization of the array element type is not needed (in
this case slices will not cause problems).

One further problem with parameterization should be noted: parameters must be used directly; that is,

they may not be involved in computations. For example the following illegal example

type V1(J:PI10) is record
Y: array (PI10 range -J..J) of boolean; =~-- the -J is 1llegal
end record;

X: Vi(10);
would have to be handled instead by

type VI1(JL,JH:PI10) is record
Y: array (PI10 range JL..JH) of boolean;
end record;

X: V1(-10,10);

Thése techniques can be used to generalize the previous stack example by parameterizing the
stack size. This is done by deleting the declaration of StackSize and by replacing the private part by

type ElemArray(StackMax:StackSizeT) is record
A: array(StackSizeT range 1..StackMax) of ElemT;
end record;
type Stack(StackMax:StackSizeT) ts record
Top: StackSizeT range 0..StackMax;
Elems: ElemArray(StackMax);
end record;

Also note that .A qualifications must be inserted at the appropriate places in the package body.

s 1.3.2 Generic Types

Another way in which the Stack type can be generalized is by parameterization of the element type.

Since types must be known at compile time, type parameterization is done by a compile time facility,
generics. The stack can be made generic in its component type by deleting the ElemT type

declaration from the visible part and then appending a generic part with an ElemT type parameter to
the beginning of the package specification.

33

14

generic
type ElemT is private;

package Stacks 1s
... --same as before, except ElemT declaration has been deleted
end Stacks;

Instances of Stack are now created by generic instantiation.

package IntStacks is new Stacks(Int);
package BoolStacks is new Stacks(boolean);

SI: IntStacks.Stack:
BI: BoolStacks.Stack:

The previous approach to generic stacks has a problem: it is impossible to create a stack whose
comporents are stacks. This is because Stack is a limited type while ElemT may not be limited. A
second problem is that Final for the elements which are stacks will not be called at the needed times.
This can be corrected by adding with clauses to the generic part.

generic
type ElemT 1is private;
with function Assign(LHS: out ElemT,RHS: in Elem7) is <>
with Final(E: in out ElemT) is <O;

package Stacks is
... == same as before except an Assign routine is added for stacks.

end Stacks;
In addition to adding a definition for the Assign procedure, the package body will also need to be
<hanged to use Assign instead of : = for element assignment and to call Final just before the end of an
element object lifetime. Since most types do not have an Assign or Final subprogram it will first be
necessary to define them betfore a stack can be declared.

procedure Assign(LHS: out Int RHS: 1n Int)
begin
LHS := RHS;
end Assign;
procedure Final(E: in out Int)
begin
null;
end Final;

package IntStacks 4s new Stacks(Int):
package IntStackStacks 15 new Stack(IntStacks.Stack);

SSI : IntStackStacks.Stack;

-

TUTORIAL ON ADA TASKING
Volume I: Basic

Interprocess Communication

by

Stephen A. Schuman

31 March 1981

TABLE CF CCNTENTS
(Volume 1)

1. Introduction and Overview 1
‘ 2. By Way of Packground 2
1 2.1. Sequential Programs 2
2.2. Concurrent Systems 2
F 2.3. Synchronous Communication 4
2.4, Concurrency in Ada 6

3. Basic Interprocess Communication !

3.17. Intitiel Formulation in Ada 12
3.2. Simple Patterns of Communication T4
3.2.1. Forward-Directed Communication 16
3.2.1.1. Steady-State Operation 18
3.2.1.2. Startup and Shutdown 20
3.2.2. Backward-Directed Communication 28
3.2.2.1. Steady-State Operation 29
2,2.2.2. Startup and Shutdown 30
2.2.3. Inward-Directed Communication 33
3.2.3.1. Steady-State Operation 34
3.2.3.2. Startup and Shutdown 36
3.2.“. Cutward-Directed Communication 39
3.2.4.17. Steady-State Operation 4g ;
2.2.4,2, Startuo and Shutdown b2 }
2.3. Alternative Chutdown Strategies bu ;
2.3.1. Input-Driven Strategy L3 .
2.3.2. Cutput-Driven Strategy 46]
3.2.3. Transit-Driven Strategy 53 £)
2.3.U4. Cther Possible CStrategies 60 ;

1. Introduction and Cverview

This is the first in a continuing series of volumes, the purpose
of which is to present a tutorial introduction to the so-called "tasking
facilities"” embedied in the Ada programming language. Such a
presentation can in no way serve as a substitute for information
provided by the Language Reference Manual [LRM: Reference Manual for the
Ada Programming Language, Proposed Standard Document, United States
Department of Defense, July 1980]. We assume a thoroughgoing knowledge
of that document on the part of every reader, and we also highly
recommend a reading of relevant portions in the "Rationale" document
which accomparied the preliminary definition of Ada [SIGPLAN Notices,
Vol.14,6,B, June 1979], even though some of the material contained
therein is now partially outdated. :

The intended audience for this series consists of ptgram (or
system) designers, whence we are not primarily concerned with conveying
the purely mechanical aspects of "coding" in (yet another) new
programming language. Rather, our 1long-term gocal is to develop a
workable set of guidelines, whereby the program designer can naturally
and effectively make use of the facilities in Ada to construct the kinds
of complex softwwere systems which were meant to be supported by this
particular language. Our subject area and assumed readership implies a
high degree of familiarity with multi-process applications from the
outset; the 1ideal reader will have already "trued out" the tasking
facilities of Ada (at least on paper), an experience which may well have
produced a certain sense of frustration. Such & reaction might be
attributed in part to the fact that Ada does not seem to directly
provide a practitioner with the traditional "tools of his trade" --
e.g., buffered message-passing or dynamic process-creation. Moreover,
though primitives for each of these (or other) styles can theoretically:
be constructed within the Ada framework, this is not necessarily the
most appropriate way to exploit the possibilities of the basic model
embodied in this language.

For the foregoing reasons, we have opted to proceed from first
principles in this series. The present volume introduces the essential
concepts of the application domain under consideration, and covers the
basic notions of interprocess communication in concurrent systems. Its
sequel 1is devoted to higher-level structuring approaches within the Ada
framework. Subsequent volumes will consist of more concrete examples,
cevelored in the form a case studies.

2. By Way of Background

This section introduces the basic concepts with which we shall be
concerned throughout this presentation. In particular, it will serve to
characterize the category of programs that is of primary interest here,
namely so-called "concurrent systems." The section concludes with a
brief overview of the facilities in Ada for programming such systems.

2.1. Sequential Programs

Conventional computer programs, however large or complex, are
normally formulated as a single sequential process. That is to say that
they are defined in terms of a certain set of data objects, to which
they are assumed to have exclusive access, together with a series of
statements specifying what operations are to be carried out wupon those
objects. The statements in question will be executed one after another
and, within each successive statement, its constituent expressions will
also be evaluated in some pre-established order. Although such programs
typically involve explicit transfers of control, occasioned both by
conditional and iterative statements as well as by invocation of
procedures or functions, and even though these constructs can generally
be nested to an arbitrary depth, there is still only one "locus of
control" associated with any execution of the program as a whole (whence
it may be considered as a single process). This simple sequential model
is sufficient to accommodate an extremely wide variety of computational
tasks, including not only traditional data processing and scientific
applications but also much of the system software required to support
such programs (e.g., a compiler).

2.2. Concurrent Systems

There is however another very important category of programs, more
properly referred to as "systems," which are most naturally formulated
in terms of multiple sequential processes. Each such process embodies
its own set of objects and separate series of statements (like =2
self-contained program), whence it 1is specialized to one particular
role; the larger objectives of the overall system are then achieved by
means of suitable intercommunication amongst these active entities. The
archetype for this structural approach is of course to be found in
social organizations, where a number of otherwise autonomous agents
¢ften act in collaboration to accomplish some collective function.

The underlying computational model for such systems involves
concurrent execution of their constituent processes. Unlike purely
sequential programs, a concurrent system hzs several distinct threads of
control (one per active process), all of which evolve independently and
{conceptually) in parallel. The cnly need for synchronizstion of their
execution arises a2t points where two o¢r more process must Jdirectly
interact with one another. Ctherwise, each may proceea at its own pace.

D

From the outset, it must be emphasized that the parallelism which
is intrinsic to concurrent systems may well be more apparent then real,
since the logical processes of any given application still have to be
mapped onto a fixed number of physical processors. This mapping is
usually achieved by imposing some appropriate scheduling discipline,
whereby the actual execution of those processes will be at least
partially seriaslized (and totally so in the case of a true
mono-processor target configuration). Thus, the potential parallelism of
this model does not necessarily represent a source of improved
throughput. This latter goal can be realized only to the extent that it
is possible to exploit whatever physical concurrency might be present in
the underlying hardware, for instance by dedicating completely
autonomous processors to specific active processes.

The real interest of the concurrent system model lies rather on a
more fundamental level. In particular, this conceptual framework allows
a designer to isolate possibly simultaneous or inherently asynchronous
activities within a complex system, and then to formulate each one as a
separate sequential process without having to specify in advance exactly
how their execution is to be dynamically interleaved.

This-latter property turns out to be essential for an increasingly
important class of applications, encompassing conventional operating
systems as well as real-time control systems, multi-station transaction
systems etc. In attempting to characterize the application domain for
which the Ada language was conceived, this class has been referred to as
"embedded computer systems."

Perhaps the primary characteristic which distinguishes such
applications is that they are all event-driven systems. In essence,
their sole reason for existence is to respond to a variety of external
stimuli -- ranging from operator and end-user requests to initiate or
terminate some specified (high-level) transaction down to device
interrupts and timing signals generated by the (more or less
specialized) hardware they serve to <control. Much of the intrinsic
complexity of these applications arises from the fact that the events in
question occur asynchronously: neither their actual order of arrival nor
their relative ordering can be prescribed in advance (since they are, in
effect, a manifestation of the "outside world").

Obviously, the software which serves to control such a system lies
at the opposite end of the spectrum from traditional data processing or
scientific applications, wherein all external transactions (e.g., file
accesses) are -- or at least appear to be -- fully synchrononous
operations, invoked by the execution of a single sequential program. The
acynchronous (and thus naturally concurrent) character of the external
events that ultimately drive the <c¢lass of systems considered here
imposes from the beginning a 1logical organization which comprises
multiple independent processes.

o me i E e AL e e TR Sl B S I S e e T o T o e

Very schematically speaking, there will exist a separate process
to handle each (physical or logical) "resource" within the system, along
with additiconal processes to carry out the various different
"activities" which could conceivably be in progress at any given time.
Mcreover, this same basic structuring principle can (and generally will)
be re-iterated at successively higher "levels of abstraction,"
corresponding approximately to autonomous subsystems which perform
progressively more complex functions within that overall organization.
The requisite internal synchronization, whereby proper operation of the
system as a whole is established and maintained, must then be embodied
in the "protocols" which govern the possible interactions among this
multiplicity of processes and subsystems.

2.3. Synchronous Communication

The purpose of synchronization within any concurrent system is to
impose the minimum constraints upon the (otherwise unconstrained) order
in which each independent process may legitimately proceed, such that
the larger objectives of the system as a whole will always be achieved.
As stated 1initially, the need for synchronization only arises when two
or more processes must interact with one another, whence it 1is
intrinsically a matter of interprocess communication (i.e., involving zt
least two distinct parties). The "such that™ proviso put forth just
above implies, in the final analysis, that each constituent process of
the system will always perform its own role in a "socially acceptable"”
fashion. This comes down to requiring that every separate process be
able to maintain the integrity and consistency of its own internal
state. Only under these conditions can it guarantee that any
interactions with other processes will be "meaningful" (at least from
its standpoint); if all parties to every transaction are able to make
the same guarantee, however, then it must be true that the overall
system will operate as expected regardless of how execution of the
constituent processes is actually interleaved in time. (This argument
presumes, of course, that these processes and their pattern of
intercommunication were properly specified in the first place -- wherein
lies the real challenge of system design!) .

The essence of synchronization is then to delay any act of
interprocess communication until such time as all of the participants
directly affected by that particular transaction are prepared to change
their internal states in a mutually consistent fashion. (It is precisely
this delay which provides the occasion for some form of scheduling to
intervene, whereupon a choice may be made amongst pending transactions
for which all parties involved are either ready to proceed or have
already completed their interaction.)

r_'_____—__—___-—--——-——-—m o

Aside from delays explicitly introduced for synchronization
(however this is accomplished), the semantics of concurrent computation
says that the active processes within a given system should always be
considered as if they were in fact executed in parallel, albeit at an
« undefined rate of progress relative to one another. The reason for
‘ following this precept is to avoid all implicit assumptions regarding
r the specific scheduling strategy, the physical characteristics of the
‘ underlying hardware or the actual order in which external events arrive.
: Any such assumptions could lead to time-dependent anomalies under even
] slightly altered conditions (and therefore represent a source of design
‘ errors that are especially difficult to detect -- and often almost
| impossible to correct "after the fact").

It 1is generally well understocd that this basic design principle
effectively precludes unsynchronized accesses to globel data -- 1i.e.,
"shared variables" -- as a safe means of interprocess communication. If
two separate processes are indeed executed in parallel, one of which
updates a certain data structure while the other reads it (which
presumably will occur if they are trying to communicate in that manner),
then those data accesses must be regarded as asynchronous and therefore
unsafe (since the respective references and assignments could well be
interleaved in a wholly arbitrary and not necessarily atomic fashion).
The need to synchronize access to such data implies that there are only
two approaches which are always safe: either those variables must be
made local to one process or the other (in which case they are no longer
global, but rather part of the internal state of a specific ©process);
or, alternatively, they must be confided to a third party which will act
to ensure the requisite synchronization (whereupon they become local to
this intermediary process, which then plays the role of a "shared
resource" that serves to coordinate communication between the two
original processes). Whichever alternative is adopted, the net effect is
to reduce all interactions to synchronous communication -- which remains
the only viable way for independent processes to interact.

Quite apart from whatever sequentialization might be introduced by

implicit scheduling, the potential parallelism within a given system may i

well be highly constrained, or even precluded entirely, as a result of

the particular protocol adopted for interprocess communication. If, for
example, a data acquisition process is specified so as to await
confirmation that each item produced has reached its ultimate consumer

before starting to acquire another, then the system will in fact operate

in a purely sequential fashion. On the other hand, if the process in
question 1is allowed to proceed with the acquisition of another item
immediately upon delivery of the previous one to some intermediary
(perhaps the first =zmong many), then there exists at 1least the
possibility for nparallel activity -- whether or not this can be
supported by the actual hardware. Thus the specific pattern of

N synchronous communication amongst the’'various processes determines the
: degree of logical concurrency embodied in the design of that system. As

a2 general rule, in the absence of other constraints one will seek to
maximize logical concurrency.

2.4, Concurrency in Ada

A sequential Ada program consists solely of subprograms (no mzatter
how deeply nested or structurally "packaged"), and can therefore be
executed as a single (externally initiated) process. In the more
general case, however, a complete "main" program will consist of
multiple sequential processes, each of which is represented by means of
a separate task declaration, together with its associated task body
(where this body serves to define the potentially parallel path of
execution corresponding to an independent process). Thus an Ada task
constitutes the unit of logical concurrency within that 1language. Any
program comprising one or more task declarations may therefore be
construed as a concurrent system.

Reflecting the fundamental requirements for such systems, the
synchronization primitives embodied in Ada are based on explicit
interprocess communication -- an approach inspired primarily by the
"Communicating Sequential Processes" model originzslly introduced by
Hoare [CACM, Vol.21,8 August 1978]. Moreover, Ada supports this
synchronous communication in the form of an essentially procedural
interface between exactly two (necessarily distinet) sequential
processes:

- the caller task, which initiates a new transaction by requesting
some particular named service (say S);

- the server task, which responds to each such request by carrying
out the operation associated with S (if any).

We shall schematically depict this form of communication as follows:

[%2]

Caller Server

1
]
[}
[}
]
[
[}
[}
]
!
1
i
L
]
]
|
|
|
[}
3
[}
[}
1
|
'
v

It may be observed that the caller/server relationship is inherently
asymmetric, reflecting the flow-of-control between the two parties
involved 1in every such transaction. The initiative lies entirely with
the caller, who actively requests a specific service (which is
identified Dby name as part of the call itself). The server plays a more
passive role, simply responding to the individual requests as they occur
(without even knowing the identity of the caller being served 1in each
instance); it 1is nonetheless the server who establishes the meaning of
such calls (as defined by the associated operation), and who thereby
cdetermines the point at which any given transaction is considered to be
complete (whereupon the corresponding caller may once again proceed).

-6

In the context of such transactions, it 1is also possible for
information (as well as control) to flow between the two participant
processes. The passage of data 1s achieved by means of formal
parameters, one or more of which may be associated with the particular
cperation to be invoked. These are specified in accordance with the same
conventions that apply for Ada procedures:

Transmission of Data:

‘o
—~
>
-
3

-3
o

~r

' : :
E N & i i
i Caller |-eececccccrccccaccccccaa- > Server |
{ | -> i i
] 1]] [}
')) !
Reception of Data:
']]]
1 I [} t
! : Q¢ Y: cut Ty;) { i
i Caller |--ecceccecmcccccaccccccaas >\ "erver |
' ! <- i ;
] 1 \ \
] 1 ' !
Interchange of Data:
1 ' ' t
i 1 ' L]
) ' R(...Z: in out Tz;...) | i
i Caller |eccccccccccccccccccccana- > Server |
i ' {==> i i
]] | [}
| ' [} [
No Passage of Data:
] 1 [} 1
I I [}]
i | S i i
i Caller |eeecmcccccmcccccccccmeeea >) Server |
t]]]
i : | i
t t [} t
Hence both the extent the direction of data-flow are wholly independent
of the basic flow of control for interprocess communication. ’

The underlying control relationship involved 1in this form of
communication may be viewed as establishing a "connection" between the
caller process and the server process, which lasts for the duration of
each individual transaction. Information may or may not flow across such
a connection, depending upon the associated parameter specification: if
there are arguments to be passed, they will be transmitted from caller
to server upon initiation of a given transaction; if there are results
to be returned, they will be transmitted from server to caller upon
subsequent completion of that transaction; if there are no formal
parameters, then only the basic control signals (corresponding to making
and breaking of the connection) need be exchanged between the two
intercommunicating processes.

It can be seen that, from the standpoint of the c¢alling process,
the semantics of synchronous communication in Ada are exactly the same
as for a conventional procedure <call. This comes about because the
caller task is effectively suspended until the corresponding transaction
is complete, Jjust as 1if it had 1invoked an ordinary procedure.
(Furthermore, if for any reason a certain transaction <cannot be
completed successfully, this failure will be signaled by the raising of
an exception within the context of the <calling task, as for any
unsuccessful subprogram call.)

It 1is on the side of the server, rather than of the caller, that
additional steps must be taken in order to ensure the synchronization
required for interprocess communication. A simple procedure call cannot
safely be used for such communication any more than direct access to
global variables, since that procedure is 1in effect executed as an
extension of its caller (and hence conceptuclly in parallel with the
corresponding server). Moreover, it may be the <case that a given
procedure is called from more than one process, whereupon there could be
several separate instances of that procedure executing concurrently.
This potential parallelism poses no particular problem concerning
accesses to local variables and/or formal parameters of that operation,
since these entities are (by definition) distinct for every invocation.
If however the procedure in question accesses any global data (so as to
communicate with the server), then all of those accesses must again be
regarded as asynchronous.

For purposes of synchrono's communication, Ada provides an
alternative form of definition, wherein each such operation is declared
to be an entry belonging to the server process. This 1is specified as
part of the corresponding task declaration:

task Server is
entry E(...);

.

end;

This distinctiorn between defining a particular operation to be an
entry, as opposed to a procedure, comes down to specifying that
concurrent calls should be serviced sequentially instead of in parallel,
For an entry, the meaning of the operation In question is established by
one or more accept statements, effectively appearing in the imperative
part of the associated task body (and, in almost all cases, embedded
within some sort of loop):

task body Server is
begin

loop

accept E(...) do
end;
end loop;

end Server;

An accept statement serves to define the sequence of actions (those
enclosed between the delimiters do ... end) to be executed for the next i
of the (possibly many) pending calls to the same named entry, during :
which time the server is said to be in rendezvous with the corresponding :
caller (so that the server has access to the parameters of that ,
particular invocation as well as to 1its own data); only after the i
actions specified within such an accept statement have been carried out i
is that entire transaction considered to be complete, whereupon the
caller and server processes may once again proceed concurrently. In the i
simplest case, when there are no actions to be performed during the !
rendezvous {(nor any formal parameters), the accept statement may be i
reduced to its degenerate form:

accept S;

In such situations, the entry S may be regarded as a pure "signal," the
next pending call to which is simply "acknowledged'" by this statement.

Thus the acceptance of successive calls becomes a fully
synchronous operation, embodied in an executable statement (unlike a
procedure, the meaning of which 1is defined by a purely declarative
construct). Accordingly, the server itself can control the points at
which communication with its caller(s) may occur. Within this framework,
concurrent <calls are conceptually enqueued on the designated entry (in
their actual order of arrival), from where they will be served one after
another. If there are no calls outstanding for an entry that is ready to
e accepted, then the server process is delayed on its side until such
time as that accept statement can be completed.

r-, RO T

In addition to a simple accept statement, Ada also allows the
programming of a so-called selective wait:

select
accept E1(...) do
end;

or o
accept E2(...) do
end;

or

o .o
accept En(...) do

end;
end select;

This permits the server to make a (non-deterministic) choice amongst
potentially pending calls to several different entries E1, E2, ... En,
and then to perform some suitable sequence of actions according to which
particular transaction was selected. Moreover, the accept statements

appearing in a selective wait may be individually guarded by means of a:
boolean expression, which must be true in order ~for the associated
alternative to be selected:]

select
when G1 =5
accept E1(...) do
end;

or)

or e

when Gm =>
accept Em(...) do

LR

end;
end select;

By appropriately setting the values of local variables figuring within
the guards G1...Gm, the server task may exercise finer control over
which entries are actually "open" weach time this selective wait
statement is executed.

-10-

Lo

4
i
t

In terms of these facilities, tihe server process can be explicitly
programmed to maintain the consistency of its own data and, thereby, to
ensure the correctness of operations by which it communicates with other
processes =-- irrespective of the number of calls that might be pending
concurrently (which necessarily emanate from distinct callers). Hence,
it is the server which wultimately establishes the synchronization
required for interprocess communication. Any given ~caller merely
initiates a request for some particular transaction and then waits for
that transaction to be completed, exactly as in the case of an ordinary
procedure call.

Thus, there is no need for the calling processes to be in sny way
concerned with whatever additional synchronization might be 1imposed &by
the server for its own purposes. As such, it is sufficient for the
server to present a purely procedural interface to its potential
callers. Within this framework, the design of a concurrent system
therefore proceeds by methods which are, in many respects, analogous to
the decomposition of a sequential program into a collection of
subprograms which invoke one another. In particular, the key *to
specifying an appropriate pattern of intercommunication amongst the
constituent processes of such a system (and thus, to establishing the
existence of distinct processes and their associated interfaces during
successive stages of decomposition) is to define, in first instance, the
desired caller/server relationship within a2 proposed configuration. This
initial step may be carried out 1in exactly the same way as for a
sequential system -- i.e., as 1if the transactions in question were
conventional procedure calls; all further considerations, insofar as
they relate only to synchronization issues, can then be addressed solely
in the context of-.-the corresponding server definitions.

An Ada task may have zero, one or more entries defined as part of
its interface; similarly, the associated task body may nor may not «call
upon the operations provided by other tasks. The resultant caller/server
relation is what we.tablishes the overall pattern of interprocess
communication within a given system. In general, & task representing
some particular process may therefore be both caller and server. There
are, however, two special cases which we shall categorize as follows:

- a resource, cocrresponding to a process which is purely a server;
- an activity, corresponding to a process which is only a caller;
Experience has shown that this (rather intuitive) taxonomy nonetheless
provides a useful frame of reference, especlially as one proceeds to

design of larger-scale concurrent systems (a problem which will be taken
up in the sequel to this volume).

-11-

3.

Basic Interprocess Communication

By way of 1illustrating the basic principles of interprocess
communication within the Ada framework, we shall build upon a very much
simplified, albeit archetypical, example. At the conceptual level, the
system in question consists of just three processes.

~ a PRODUCER process, which 1is dedicated to data acquisition
(e.g., 1input from some external source or device), where the
data items so acquired are delivered one at a time as output
from this process.

-~ a TRANSDUCER process, which serves to carry out some
(potentially quite complex) transformation on the data supplied
as input, where the corresponding result fcr each such argument
is delivered as output.

~ a CONSUMER process, which 1is responsible for the final
disposition of the result data (e.g., output to some display or
storage medium), where the successive data items are supplied as
input to this process.

The intended flow of information amongst these three processes is shown
pictorially in Fig. 3-1. In terms of data-flow, it can be seen that the
constituent processes of this system are organized into a conventional
"pipeline" (or "bucket brigade™) configuration.

\
process / process process

i i
. PRODUCER | _A:ARG
1 '
1 i
: i

i

TRANSDUCER | R:RES \
i /
i

i
CONSUMER |
]
i

Figure 3-1: Data-Flow of the Example Multi-Process System.

3.1. Initial Formulation in Ada

Turning to the formulation of this example in Ada, the simplest
possible program structure will be adopted at the outset. More realistic
approaches to the overall structuring of such systems are to be
addressed in the next volume of this series. For the moment, however, it
will be assumed that the particular application of interest can be
conveniently expressed as a single "main program."

In skeleton form, the definition of such a main program might
appear as follows:

procedure Application is

} type ARG is array ... of ... ;
; type RES is array ... of ... ;

task Producer is ... ;
task Transducer is ... ;
task Consumer is ... ;
task body Producer is
begiaz

end.ﬁéoducer;

task body Transducer 1is
begiﬁ.

end.%;ansducer;

task body Consumer is

begin

end Consumer;

begin
null;
end Application;

Formulated in this manner, the constituent processes of the system are
specified directly in terms of declarations for the corresponding tasks
(Producer, Transducer and Consumer), together with their associated
todies. As such, the entire system is effectively defined within tne
declarative part of the enclosing main program (Application), whereupon
the statement list of this latter is empty. Thus, a given execution of
Application (as an externally initiated task) consists simply of
activating its three component tasks, which then proceed to communicate
amongst themselves; that execution is finished only when all of those
dependent tasks have properly terminated, owing to the implicit "join"
at the end of the embedding (main) task.

e e g

e

3.2. Simple Patterns of Communication

Once such an overall system structure has been established, the

primary question then becomes how to specify the requisite pattern of
communication among its constituent processes. The intended flow of
information has already been fixed (cf. Fig. 3-1), namely:

- items of tyne ARG are to be transmitted from the Producer to the
Transducer process;

- items of type RES aretto be transmitted from the Transducer to
the Consumer process.

Having chosen here to explicitly represent each of these processes as an_

Ada task, it follows that this intercommunication must be carried out in
a fully synchronous fashion, making use of the entry call/accept
mechanism. Indeed, no other approach would be viable, since these
language facilities embody the only safe means whereby individual tasks
may directly interact with one another.

Even though the possible approaches to interprocess communication
are so constrained, the program designer is nevertheless left with a
very important degree of freedom in this regard. Specifically, the
client/server relationship (i.e., "who should call whom") can be decided
upon 1independently of the desired data-flow. Thus, for both of the

elementary transactions described above, the flow of control need not

necessarily correspond to the direction in which information is to flow.
In the present context, therefore, four distinct patterns of
communication might well be considered. These alternatives are depicted
schematically in Fig. 3-2, on the next page.

All of the communication patterns shown in Fig. 3-2 are equally
plaucible, although there are advantages and drawbacks associated with
each approach. The choice ultimately depends upon the expected behavior
of the system as a whole. For this reason, we shall examine these four
alternatives one after another in the subsections which follow,
attempting to provide some insight into the basis wupon which such
decisions are made. It will emerge from the ensuing discussion that
these considerations play a quite critical role in the program design

process.

14

Asymmetric Communication Patterns

Forward-Directed:

]
|
]
[}
\4

Send(R:in RES)

[}
[l
[}
]
]
t
v

Producer |-==ccececcea-. Transducer |-eecececcecwea Consumer

| |

1 1
Backward-Directed:
'] 1 1] t '
t] t [}] t
! ! Recv(A:out ARG) ! ! Recv(R:out RES) ! H
| Producer |({emececaccccccaa- | Transducer |{eveeceoceccaccacaa.o | Consumer |
]]]]] '
: \ \ | X :
t 1} 1] 1 t
Symmetric Communication Patterns
Inward-Directed:
) | | \ | |
' ! Send(A:in ARG) ! ! Recv(R:out RES) ! 1
! Producer |e-eccecacacaeaa- >! Transducer [{-we-mcccccaemca-a ! Consumer
i i ' : 1 '
' i ! ! H !
Outward-Directed:
j ' i H g)
! ! Reecv(A:out ARG) | ! Send(R:in RES) | '
i Producer |{(-—ecececacccaaaa- i Transducer |~=wececcecc-—e=. ~===>| Consumer |
])])))
) ' | | ; :
1]] t] 1

Figure 3-2: Alternative

Patterns of Communication in

the Example System.

- » %
i
‘

3.2.1. Forward-Directed Communication

Pursuing the development of our example system, we shall opt
initially to structure the interrpocess communication as follows:

Send(A:in ARG) Send(R:in RES)

Producer Transducer Consumer

[}
]
[}
[}
]
[}
'
[}
]
]
[}
]
1
[}
U
v

!
1
1
i
[}
|
[}
|
I
|
[}
]
[}
]
|
[}
A\

Such a pattern of communication is referred to as "forward-directed,"
because the flow of control goes in the same direction as the flow of
information., On purely intuitive grounds, this might seem to be the most
natural approach. For this reason alone, it has been adopted here as =2
point of departure; as yet hcwever, there is no pragmatic basis for
preferring this particular approach over any of the other alternatives
depicted in Fig. 3-2.

It is perhaps useful to characterize the configuration shown zabcve
according to the terminology introduced earlier. At this level cf
description, the Producer process represents an activity (since it i=
merely a caller), whereas the Consumer process constitutes a resource
(since it is only a server). The Transducer process is neither activity
nor resource (being both server and caller), which reflects 1its
intermediary role in this organizational structure.

Given the communication pattern specified in the atove diesgram, a
corresponding Ada formulation can be obtained by appropriately refining
the overall structure outlined previously. Proceeding in this fashion,
the constituent processes of the system would now be represented (within
the declarative part of the main program Application) bty the f-llowing
(complete) task declarations:

task Producer;

task Transducer is
entry Send(A:in ARG);
end;

task Consumer is
entry Send(R:in RES);
end;

-16~

e e

The associated bodies would then be defined (still in skeleton form) as
follows:

task body Producer is

begié

f;énsducer.Send(...); j

end Producer;

task body Transducer is

begin

accept Send(A:in ARG) do

Consumer.Send(...); | i

end Transducer;

task body Consumer is
begiﬁ
accept Send(R:in RES) do
end.éénsumer;
Although these task bodies are not yet complete, this structure is now i

sufficient to exhibit the pattern of interprocess communication
currently under consideration:

- the Producer calls Transducer's entry Send which, when accepted,
allows transmission of an item of type ARG;

- the Transducer calls Consumer's entry Send which, when accepted,
allows transmission of an item of type RES.

This framework therefore provides a basis for sketching out a possible

formulation for the "steady-state™ operation of the entire system (i.e.,
disregarding for the moment the problems of process initiation and

- termination).

-17=

s 3

Syy . -

T *---'---——--n---u---.-..._....._..__,.__-.!1
3.2.7.1. Steady-State Cperation

A first definition for the steady-state operation of the example
system could be obtained by completing its task bodies as follows:

task body Producer is
4 AA: ARG;
H procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire(AA);
Transducer.Send(AA); .
end loop; }
end Producer; :

task body Transducer is

AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ... ;
begin

loop

accept Send(A:in ARG) do

AA = A;
end;

Transform(AA,RR);
Consumer.3end(RR);
end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ... ;
begin
loop
accept Send(R:in RES) do
RR :=z R;
end;
Dispose(RR);
end loop;
end Consumer;

Specific details of the data acquisition, transformation and disposition

operations are of no immediate interest here, whence the corresponding

N 2ections have Dbeen encapsulated as local procedures, which will not be
fur+ther defined.

TS e e - s . -

What is of definite interest, however, is the flow of information
between the constituent processes of our example system. For the pattern
of communication considered at present, the actual data transfers must
be defined by means of appropriate accept statements within the bodies ‘
of the Transducer 2and Consumer tasks, respectively. Recall that an
accept statement specifies a sequence of actions to be carried out
whilst the caller and server tasks are in "rendezvous." In each instance
above, those actions have been reduced to a single assignment statement,
whereby the input item supplied by the caller is explicitly copied into
2 local variable belonging to the server. Once this has been 1
accomplished, both processes may again proceed independently. Thus, the
objective has been (as it will continue to be throughout this
presentation) to maximize the degree of logical concurrency within the
system as a whole.

On grounds of efficiency, the copying necessarily associated with
this transmission of information between processes might at first seem
to be a cause for concern (especially since the types ARG and RES were
declared as arrays, suggesting that such items could be quite large
blocks of data). If these copies are to be avoided, however, then the
entire application may as well be formulated as 2z single (main) task:

procedure Application is

type ARG is array ... of ... ; {
type RES is array ... of ... ;

¥ AA: ARG;
RR: RES;

procedure Acquire(A:out ARG) is ... ;
procedure Transform(A:in ARG; R:out RES) is ... ;
procedure Dispose(R:in RES) is ... ;
begin
loop
Acquire(Ar);
Transform(AA,RR);
Dispose(RR);
end loop;
end Application;

: Whereas this definition still shows only the steady-state operation, it

: can be seen that the system has now become totally sequential;
acquistion of a new item does not begin until the transformation, and

indeed the disposition, of the previous one has been completed. With

such an approach, no concurrency is present (or possible at this level).

v e s

-19-

ﬁ 55~

*r

L X3

3

3.2.1.2. Startup and Shutdown

Returning to the multi-task formulation of our example, we are now
ready to address the issues of process initiation and termination, which
E provide the basis for defining startup and shutdown of the overall

system.

From a careful reading of the Ada Reference Manual [9.3], it may
be ascertained that the first steady-state definition of this system, as
developed above, presents no particular problems insofar a2s startup is
concerned. Its constituent processes, specified in the context of the
main program Application, are initiated implicitly as a consequence of ©
the corresponding task declarations, whereupon each of these tasks (es
defined by their associated bodies) then proceeds as a parallel path of
execution. Although the language does not specify an order in which such
tasks are activated, this turns out not to matter so 1long as their
interactions are entirely confined to synchronous communication (via the
entry call/accept mechanism). When this rule is respected, it will in
general be true that system startup requires no special attention, since
prccess initiation essentially operates in accordance with the
underlying block-structure of the language.

Unfortunately, the same principle of "benign neglect" does not
apply with respect to system shutdown. The semantics of Ada are such
that execution of a statement 1list appearing within most block-like
constructions (including both subprogram and task bodies, but excluding
the optional 1initialization part of a package body) is not considered
ccmplete until all locally-declared (dependent) tasks have terminated
[cf. LRM 9.4]; in other words, there is an implicit join operation
associated with exiting from any of these 1language constructs. Thus,
even though process termination 1like initiation 1is based on the
underlying block-structure, the program designer must pay explicit
i attention to ensuring that the component tasks at every level terminate
! in one fashion or another, lest the entire system become suspended at

some point waiting for completion of a subtask which (inadvertently)
continues forever. For this reason, the problems of process termination
must always be addressed as an integral part of program design. It will
be seen, moreover, that these considerations often play a quite critical
rcle in the overall structuring of any given system.

Examining the previously developed definition for the steady-state
cperation of our example, it can be seen that the system as formulated
so far will indeed never shut down; this 1is hardly surprising, since
each of the task bodies for its constituent processes was initially
expressed in terms of an infinite loop.

!
ny
(@}

{

Se

When it comes to deciding the basis for effecting shutdown in the
context of our example, we are in fact facing one of the more difficult
problems involved in system (as opposed to program) design. It is well
known that the issues which arise in conjunction with both the startup
and shutdown of any concurrent sytem are often far more complex than
those which pertain to its steady~-state operation. For this reason, it
will in general be necessary to c¢onsider a number of alternative
strategies in this area before settling upon one particular approach. We
shall, however, defer the discussion of such alternatives to a later
section and adopt, for the moment, what is presumably the most intuitive
strategy, namely ¢to shut the system down once the Producer process has
determined (by some purely local criterion) that the last item of input
has been transmitted; we therefore refer to this mode of operation as
"input~driven." The constraint we wish to impose in this connection,
however, 1is that the shutdown of our system will be "graceful" -- i.e.,
that all of its constituent processes will terminate properly, but only
after the result corresponding to the last input argument hzs been
delivered by the Transducer process and this result has been duly
dispesed of by the Consumer process.

To sirolify the presentation, we shall express the decision as to

whether the inout has been exhausted in terms of a local 1loop counter,
whereupon the body of the Producer task may be reformulated as follows:

task body Producer is

AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
for N in range ... loop
Acquire(AA);
Transducer.Send(AA);
end loop;

end Producer;

Thus, the Producer process terminates normally after some specified
number of arguments have been sent to the Transducer. The problem then
becomes one of ensuring the proper termination of the processes which
are "downstream," once they have also completed action on the last item
of information in the pipeline. We reject here the trivial solution of
merely 1introducing a separate local counter (with the same range) into
the becdies of the Transducer and Consumer tasks as well, since this
wculd be tantamount to sharing "global" knowledge amongst sll of the
constituent processes (therety violating our requirement that shutdown
should be based cn a determination made solely by the Producer). We are
therfcre obliged to resolve this problem by other means, necessarily
involving more explicit forms of synchronization.

-21-

I . Cotorage Ao

At this stage we have now provided for explicit termination of the
Producer task (by means of a simple loop counter) but, for the moment,
left both the Transducer and Consumer tasks as first formulated (in
terms of an infinite loop). It is instructive to consider here exactly
why the system so defined fails to shut down as desired. With regard to
the flow of information, it can be seen that the Transducer and then the
Consumer will indeed successfully complete action wupon the 1last data
item delivered by the Producer. However, both the downstream processes
will subsequently block, awaiting transmission of the next item to be
processed; each will wait forever, because there are no further
arguments to come from the Producer (which has terminated) nor,
therefore, will any more results be transmitted from the Transducer to
the Consumer. Thus, neither of the latter processes will ever terminate
(since the corresponding tasks will simply wait indefinitely on their
respective accept statements). In consequence the overall system will
remain deadlocked in this waiting state (i.e., execution of the main
program Application will never be complete, owing to the fact that some
of its component tasks do. not terminate).

The problem encountered at this point is merely another
manifestation of the 1issue that always arises 1in conjunction with
ripeline systems 1like the present example -- namely, how to signal (or
otherwise detect) an end-of-transmission, such that the processes
waiting downstream do not remain forever blocked in that state. This
problem may be resolved in several different ways.

A very common approach is to transmit some distinguishable
end-of-stream marker in place of (or in addition to) the expected data
i*em. In the current context, this might for instance be accomplished
either by declaring each of the types ARG and RES to be a variant record
structure or, alternatively, by specifying some form of status indicator
as a second parameter to the Send entry of both the Transducer and
Consumer tazsks. We shall leave the corresponding Ada formulations as an
exercise for the reader, since neither is particularly difficult to
program (though both 1lead to certain language complexities and/or
run-time overhead in their own right). We note, however, that all such
"data=-cdirected” approaches involve passing additional information as
part of every transaction between communicating processes, whereby the
encoding conventions also serve to ensure the requisite synchronization
(e.g., to trigger shutdown). This may be acceptable (or necessary) in
many situations, but our interest here is rather to illustrate how the
same effect may be achieved more directly, by means of appropriate
ccntrol signals.

-22=-

53

The potential for deacdlock as described above, where a substask
ends up waiting indefinitely on an accept statement when it should
simply terminate normally, is so prevalent that Ada provides a special
language feature to aid 1in programming orderly shutdown under these
conditions. The basic principle 1is to replace every such accept
statement by a selective wait statement having a "terminate" branch.
This latter a2lternative (which may also appear in multiple selective
waits) causes 1immediate termination of the associated task; it can be
selected if and only if all other tasks in the same context are either
already terminated or waiting on a similar open alternative [cf. LRM
9.7.1]. This permits the problem of shutting down our example system to
resolved by so reformulating the Transducer and Consumer task bodies:

task body Transcducer is

AA: ARG;
RR: RES;
procecure Transform(A:in ARG; R:out RES) is ... ;
begin
lcop
select
accept Send(A:in ARG) do
AR = Ay
end;

Transform(AA;RR);
Consumer.Send(RR);
or
terminate;
end select;
end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure DPispose(R:in RES) is ... ;
begin
locp
select
accept Send(R:in RES) do
RR := R;
end;
Dispose(RR);
or
terminate;
and select;
end loop;
and Consumer;

oy

S¥

]

When this specialized facility is employed, the synchronization
required to achieve proper termination is provided by an implicit
(language-defined) signal. Conceptually, a built-in condition is raised
whenever all "active" processes in a given system have separately (and
for whatever reasons) come to the end of their own execution; this event
is only acknowledged, however, when every other "passive" process of
that system has also entered a2 quiescent state (being ready either to
accept further communication or, alternatively, to complete its
execution as well), whereupon the entire system can be shut down in a
fully . synchronous fashion. In our example as now formulated, such a
signal is effectively generated by termination of the Producer process
(once it has successfully transmitted the last input argument to the
Transducer), but termination of the overall system 1is deferred until
both the Transducer and Consumer processes have reached their respective
quiescent states. It may or may not be obvious that this latter property
is sufficient to ensure that the last result will indeed be prcperly
disposed of by the Consumer before shutdown. The argument, based on the
rendezvous semantics of Ada, goes as follows:

1. The Producer cannot terminate until it has completed
transmission of the last argument to the Transducer.

2. The Transducer cannot re-enter its selective wait until it has
transmitted the corresponding result to the Consumer.

3. The Consumer cannot re-enter its selective wait wuntil it has
finally disposed of the last result from the Transducer.

Cnly a&after all three of these conditions have been satisfied can the
system shut down -- whence it will (eventually) do so gracefully, as we
have reqguired.

Whereas the language mechanism employed above may at first strike
one as something of a trick, it nonetheless provides not only further
insight into the general problem of termination but also a ready-made
solution, at least in certain simple cases. As such, it should always be
given due consideration, even if it 1is finally rejected because of
certain accompanying drawbacks. Among these latter is the fact that it
forces the program designer to reason =zbout all of the constituent
processes at once in order to ensure shutdown of the system as a whole.
It would be preferable, from a methodological viewpoint, to be able to
think more in terms of the separate transactions between individual
processes that directly communicate with each other (a2pplying the
prirciple of divide and conguer). Mgoreover, it may be observed that this
approach to termination 1is ultimately based upon another form of
centralized knowledge (embodied in the run-time support system for the
language, which 1is capatle of determining the state of every component
task in the system); this is contrary to the overall objectives pursued
here,

~2U-

o TERTTRRE AT T TR R SR T T TR TR TR T A R e

.

For the foregoing reasons, we now wish to explore an alternative
approsch to shutting down our example system, in order to show how this
effect can also be achieved by means of explicit (programmer-defined)
signals between communicating processes instead of relying upon implicit
signals -~ 1i.e., those which wunderlie the particular termination
mechanism that has been built 1into the language. Specifically, this
alternative consists of introducing separate end-of-transmission
signals, so as to properly terminate the (logically distinct)
transactions between the Producer and the Transducer, and between the
Transducer and Consumer, respectively. Thus, such a signal will be seen
to serve the same synchronization function as an end-of-stream marker in
traditional data-directed approaches (with the potential advantage ° that
the requisite information need only be transmitted once, at what is
actually the end of the stream, since the desired conventions are
effectively embodied 1in the communication protocol itself rather than
being encoded in some <concrete data representation). For the
forward-directed pattern of communication currently under consideration,
the additional control signals would be introduced as follows:

]]
i]
1]]
1 I
Producer | } Transducer | i Consumer
' '
] t
]]

These signals are necessarily directed in the same way as the calls by
which the associated data stream is transmitted, so that the initial
characteristics of the overall configuration are in no way altered (the
Producer is still an activity and the Consumer a resource, while the
Transducer continues to play its intermediary role). The introduction of
these control signals can be accommodated by simply adding the
corresponding (parameterless) entries to the Transducer and Consumer
tasks. The constituent processes of our system would then be defined by
revising both the task declarations and their associated bodies:

task Producer;

task Transducer is
entry Send(A:in ARG);
entry EoT;

end;

task Consumer is
entry Send(A:In ARG);
entry EoT;

end;

«25-

i/

e o s

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
for N in range ... loop
Acquire(AA);
Transducer.Send(AA);
end loop;
Transducer.EoT;
end Producer;

task body Transducer is

AA: ARG;
1 RR: RES;
procedure Transform(A:in ARG; R:out RES) is ... ;
begin
loop
select
accept Send(A:in ARG) do
AA := A;
end;

Transform(AA,RR);
Consumer.Send(RR);
or
accept EoT; exit;
end select;
end loop;
' Consumer.EoT;
' end Transducer;

task bcdy Consumer is

RR: RES;

procedure Dispose(R:in RES) is ... ;
begin

locp

select
accept Send(R:in RES) do
RR := R;

end
Dispose(RR);
or
accept EoT; exit;
encd select;
end loop; .
. end Consumer; :

For this alternative formulation, the property of graceful
shutdown can be established by exactly the same arguments as for the
previous approach (based on implicit signals). Furthermore, it may be
seen that the basic structure of these two solutions is essentially
identical. The only fundamental difference 1is that, in this second
] formulation above, the necessary synchronization is programmed

. explicitly: at the end of each separate data stream, the originating
process transmits a mutually agreed upon control signzl (here called EoT
in both cases) to the receiver with which it has been communicating; the
originator then awaits confirmation of this signal, after which it
terminates normally of its own accord (as do all of the downstream
processes as well, each in their own time).

Thus, by contrast with the first solution, this explicit approach
to shutting down the system might also be said to be more decentralized,
in that each of the constituent processes takes local responsibility for
properly terminating whatever transactions it has previously initiated,
prior to completing its execution. (We note that such a discipline is
entirely precluded by the built-in mechanism of Ada, since selection of
a terminate alternative causes 1immediate termination of the task in
question, leaving no opportunity for further communication or any other
form of "finilization" activity).

It should be pointed out that both solutions developed above
depend critically upon the fact that 211 communication between processes
is carried out in a synchronous fashion (based primarily upon the
rendezvous semantics of the 1language). With regard to actually

) transferring data from one independent process to another, the need for
: some such synchronization 1is presumably obvious. Our requirement for
‘ graceful shutdown of the system has made synchronizing the termination
! of 1its constituent processes equally essential (irrespective of whether
‘ this 1is accomplished explicitly or implicitly). Consequently, any
! attempt to terminate the downstream processes asynchronously -« for
: instance, by raising the FAILURE exception in the corresponding tasks --
would be wholly inappropriate (because it could not then be guaranteed
that the items already in the pipeline were processed to completion); !
the same argument applies (with even greater force) to use of the abort .
Sstatement.

A final 1lesson to be learned from the more general termination
problem addressed here is that the program designer should always be
exceedingly suspicious of an isolated accept statement, as opposed to a
selective wait which makes some provision for shutdown, unless it can be

- argued with absolute conviction that the system will never be blocked
. ; indefinitely in a waiting state at such points.

-27-

(3

" e

3.2.2. Backward-Directed Communication

At this point, we return to an examination of alternative
approaches to interprocess communication within the framework of our
example system. We shall now consider the second of the simple
structures originally proposed in Fig. 3-2, depicted as follows:

]
)
Recv(A:out ARG) Recv(R:out RES) |

t
!
d
Producer |<{=wececcccacacacaaa | Transducer |{e-ececcccaccnaaaaaa ! Consumer
H
)
1

A

This pattern of communication was referred to as "backward-directed,"
because the flow of control goes in the opposite direction from the flow
of information. Thus, 1in «constrast to the forward-directed pattern
adopted initially, the downstream processes have the initiative here; in
effect, they actively solicit successive data items by calling on their
respective suppliers, rather than passively accepting delivery from
upstream., On an intuitive basis, this particular approach would appear
to be every bit as plausible as the one we first considered.

It can be seen that the configuration shown above is just a mirror
image of the system which resulted from our previous decision to
structure all communications in a forward-directed fashion. As such, the
outside processes have merely switched roles: the Consumer has become an
activity whereas the Producer in now a resource; as before, the
Transducer is neither an activity nor a resource, put continues to be
cast in its intermediary role.

From the communication pattern established by the above diagram,
we can once more derive a correpsonding programmatic formulation wherein
the constituent processes of the system are directly represented in
terms of Ada tasks. These would now be specified (still within the

declarative part of the main program Application) by the following
declarations:

task Producer is

entry Recv(A:out ARG);
end;
task Transducer is
entry Recv(R:out RES);
end;

task Consumer;

-28-

3.2.2.1. Steady-State COperation

We shall again proceed by first developing a simple definition for
the steady-state operation of our system. The following task bodies will
serve to exhibit the backward-directed pattern of communication
considered here:

task body Prcducer is
AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire(AA);
accept Recv(A:out ARG) dc
A := AL
end;
end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ... ;
begin
loop
Producer .Recv(AA);
Transform(AA,RR);
accept Recv(R:out RES) do
R := RR;
end;
end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ... ;
begin
loop
Transducer.Re (RR);
Dispose(RR);
end loop;
end Consumer;

It can be seen that this steady-state definition is essentially
identical to that which was first developed for the forward directed
pattern. Only the entry call and accept statements are "inverted,"
reflecting the reversed direction of communication. As might be
expected, the copies associated with transmitting data between processes
still cannot be avoided except by sacrificing all logical concurrency.

-29-

3.2.2.2. Startup and Shutdown

Having thus developed a second formulation for the steady-state
operation of our example system, we must once more address the problems
of startup and shutdown for this alternative, backward-directed
configuration. As with the forward-directed approach introduced
initially, it turns out that startup requires no special attention. All
three constituent processes of the system defined above are initiated
implicitly, as a consequence of the corresponding task declarations. The
order of initiation is again immaterial, since these tasks communicate
solely by means of entry calls. This discipline ensures that the
necessary synchronization will be established from the outset, whatever
the direction of that communication.

With respect to- shutdown, however, we shall encounter a rather
pleasant surprise in the present context, at least when compared to the
potential problems associated with the pattern of communication
considered previously. COf course, there is still a2 need to adopt some
basis for terminating execution of the Application program 2s a whole
(since the steady-state definition for each of its component tasks
involves an indefinite loop). For the time being, we shall continue to
consider only a basic input-driven strategy, while maintaining our
requirement that the overall system shut down gracefully (having
completely processed all data items in the pipeline). The determination
as to whether the input has been exhausted will be expressed here by the
same simple expedient, a local loop counter: i

task body Producer is

AA: ARG; ’
procedure Acquire(A:out ARG) is ... ;
begin

for N in range ... loop

Acquire(AA);

accept Recv(A:ocut ARG) do

A := AA;

end;

end loop;

and Producer;

The surprise is that some such provision within the Producer process is
sufficient -- the system will now shut down exactly as desired! Despite
the fact that both the Transducer and Consumer tasks appear to loop
indefinitely, they will nonetheless terminate appropriately, albeit
exceptionally. What happens is that each of the processes representea by
these latter tasks will effectively "commit suicide" at the proper :
mcment, by attempting to communicate with a process that has already
terminated (or is about to do so). Thus, with this approach, it 1is the

) failure to accept further cemmunications which provides the
t synchronization required for shutdown.

€<

—— - g

o Y

The solution suggested above depends upon a judicious use of both
the tasking and the exception mechanisms of Ada. The interaction between
these separate language facilities can be summarized as follows:

- When a task terminates (regardless of how), 2all pending and
future calls to any of its entries will result in the raising of
a built-in exception (specifically, TASKING-ERROR) in the
context of each such caller; in general, exceptions serve to
1 notify a calling task of any operation that fails to complete
successully.

- When this exception (like any other) is not explicitly handled
at some level by the calling task, all of its outstanding
operations are successively terminated; this signal 1is thus
propagated back to the level of the task for which the exception
was raised, but no further (i.e., not to any embedding tasks). |

- When an unhandled exception (of any sort) reaches the 1level of
the corresponding task body, execution of this latter is also
terminated exceptionally; at the 1level of the immediately |
embedding task, however, there is no further distinction between
normal and exceptional termination of its component subtasks. j

SpreT

These conventions of Ada can be exploited to great advantage in the
present context, because raising of this exception then serves not only
to signal the end of a given data stream but also to trigger termination
of the receiving task when that event occurs. This is precisely the
effect which is desired to achieve graceful shutdown in our example
system as now formulated. The requisite properties may be established by
the following argument:

1. The Producer process will deliver every input argument that it
acquires to the Transducer, but when there are no more it will
not accept any further communication and so terminate normally.

2. The Transducer process will deliver to the Consumer a result for
every argument which it receives, but it will always request
further data from the Producer and thus terminate exceptionally.

2. The Consumer process will dispose of every output result which
it receives from the Transducer, ©but it will always request
further data from that source and thus tvrminate exceptionally.

All of the constituent processes of our system will therefore complete
action on the last item of information which enters the pipeline, and
will eventually terminate (each in its own fashion). Termination of the
corresponding component tasks (for whatever reason) means that execution |
of the main program Application will 3lso terminate, whereupon the
entire system will ultimately shut down just as we have required.

-31=

<7

The relative simplicity of the solution obtained in this instance
points up one of the primary advanteges to what we have called a
tackward-directed pattern of interprocess communication (wherein data is
effectively "pulled" rather than "pushed" downstream). When the
receiving process 1is always actively requesting the next item of
information, it is in a position to be directly informed of the success
or failure of that request even if the transmitting process has already
terminated. This is to be contrasted with the opposite approach, in
which the receiver passively awaits the next item and so must somehow be
informed (either explicitly or implicitly) that it should not wait any
longer. The axiom of a system based on backward-directed communication
is that the downstream processes are still alive so long as there are
additional items to be transmitted (whence an isolated accept statement
is not 1in any way dangerous); the transmitters are then structured tc
ensure that they will terminate on their side instead of waiting to
accept further requests (so that their respective receivers will then be
notified when they next attempt to solicit more input).

It should also be observed that the use of an exception to achieve
this notification <(and thereby trigger termination) is not at all
asynchronous, since its raising is a potential consequence of the
caller's own actions rather than of concurrent action by another process
(as would be the case if the server, for instance, were to raise the
FAILURE exception in the caller). Moreover, it is still possible for the
caller to "trap" this exception at some level, and so perform certain
finalization activities wupon receiving such a signal (or even override
its own termination):

| task body Caller is

begin

. éééin
éé;ver.Call(...);

excéﬁéion

when others => ...
end;

end Caller;

(No such possibility is present when the roles are reversed, and the
built-in terminate signal 1is used). Finally, this "suicide" method of
termination 2an certainly be regarded as distributed, in that it
involves transactions between individual communicating processes, not
some form of centralized knowledge. For these reasons, we consider this
approach to be a legitimate design option, and see no need to introduce
additional explicit signals in order to achieve shutdown 1in <“his
context.

3.2.3. Inward=Directed Communication

We now turn to the third of the simple interprocess communication
structures proposed in Fig. 3-2, depicted as follows:

wn
o

3

o8
—~
x>
[
3

x=
=
[®]
~r

d]

! Producer |-=-ccccccacccca-- > Transducer Consumer
’ g H

]]

1 !

A
]
]
]
\
]
[}
\
]
[}
)
\
]
]
]
[}
]

The above pattern of communication was referred to as "inward-directed,"
because the flow of control goes from the outside in (whereas the flow
of information is still from left to right). It is therefore the first
} of the "symmetric" communication patterns to be considered, as compared
with those adopted ©previously, which were both asymmetric by nature.
Within such a structure, the initiative is shared by the Producer and
Consumer processes, while the Transducer process is essentially passive.
This particular approach might be appropriate, for instance, in cases
where the latter corresponds to some general-purpose utility operation
-- e.g., a complex transformation that would more typically be
predefined in an application 1library module for subsequent use in
several different systems.

Some such hypothesis is in fact reflected in our characterization
of the configuration shown above: here, both the Producer and the
Consumer are to be regarded as activities, but the Transducer has become
a pure resource; thus, there are no longer any processes which play an
intermediary role in this overall organizational structure.

From the pattern specified by the above diagram we may again
proceed directly to a corresponding Ada formulation. The constituent
processes of our example system would now be represented by the
following task declarations:

task Producer;

task Transducer is
entry Send(A:in ARG);
entry Recv(R:out RES);
end;

task Consumer;

Py ey - - _ P et st

— Y

As before, we shall first establish the steady-state operation for
our system, so as to exhibit the inward-directed communication pattern
which is of interest here. This can be most simply obtained by defining
the associated task bodies as follows:

3.2.3.1. Steady-State Cperation

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...;
begin
loop
Acquire(AA);
Transducer.Send(AA);
end loop;
end Producer;

task body Transducer is

AA: ARG;
RR: RES;
procecure Transform(AA:in ARG; RR:out RES) is ...;
begin
loop
accept Send(A:in ARG) do
AA := A; :
end; i

Transform(AA,RR); !

accept Recv(R:out RES) do ?
R :z RR; :

end; :
end loop;

end Transducer;

task body Consumer 1is
RR: RES;
procedure Dispose(R:in REZ) is ...;
begin
loop
Transducer.Recv(RR);
- Dispose{(RR);
end loop;
end Consumer;

In this formulation, the Producer and Consumer tasks contain only entry
calls (reflecting their status as pure activities), while both of the
correspgonding sccept statements appear within the Transducer task (which
iz therefcre a resocurcze since it is the server for each of these calls).

This 1initial definition for the steady-state operation of our
example has the same property which was present in previous
formulations, namely, that the transmission of information between
processes 1s accomplished by explicit copies (from transmitter to
receiver), so as to maximally decouple the constituent processes and
thereby achieve the greatest possible degree of 1logical concurrency
within the system as a whole. However, in the context of symmetric
patters of communication like that considered here, it may sometimes be
appropriate to examine various design options in order to explore
potential tradeoffs in this domain. By way of illustration, 1let us
imagine two different definitions for the Transducer task, which might
equally well have been introduced in place of that given above:

task body Transducer is --Option 1
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...;
tegin
loop
accept Send(A:in ARG) do
Transform(A,RR);

end;
accept Recv(R:out RES) do
R := RR;
end;
end loop;

end Transducer;

task body Transducer is -~Option 2
AA: ARG;
procedure Transform(A:in ARG; R:out RES) is ...;
begin
loop
accept Send(A:in ARG) do
AA := A;
end;
accept Recv(R:out RES) do
Transform(AA,R);
end;
end loop;
end Transducer;

For Cption 1, the Procducer task is held 1in rendezvous with the
Transducer while the argument data is transformed, thus avoiding the
need to copy this information on input; however, the corresponding
result 1is still transmitted by an explicit copy from the Transducer to
the Consumer. Option 2 is just the opposite. Thus, in the first option,
the combined operation of data acquisition and its ensuing
transformation conceptually proceeds in parallel with that of the final
data disposition, whereas the overlap is reversed in the second option.

3.2.3.2. Startup and Shutdown

We must once more complete. our initial steady-state definition by
addressing the issues of startup and shutdown for the inward-directed
configuraion now under <consideration. As for both the forward- and
backward-directed approaches already discussed, startup poses no special
problems. Thus we need only be concerned with how to achieve shutdown in
the present context. Insofar as the current pattern of communication 1is
a combination of ¢the previous ones, we should expect to arrive at a .
solution which embodies certain aspects of each. Again, we shall
confine our attention for the moment to a simple input-driven strategy,
and continue to represent this determination by a local loop counter: .

task body Producer is

AA: ARG;
procedure Acquire(A:in ARG) is ...;
begin .
for N in range ... loop
Acquire(Ap);
Transducer.Send(AA);
end loop;

end Producer;

Since we still want to shut our system down gracefully (i.e., process
2ll items in the pipeline before proper termination), we must now focus
on the downstream processes. With regard to the transactions between the
Producer and the Transducer their pattern of communication is in effect
] forward-directed, and so it might seem that the "path of least
' resistance” would be to make use of the built-in termination mechanism:

; task body Transducer is

AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...;
begin
loop
select
accept Send(A:in ARG) do
AA := A;
end;

Transform(AA:RR);
accept Recv(R:out RES) do
R := RR;
end;
or

terminate; .

. end select; g
- end loop;

end Transducer;

7~

|

With regard to the pattern of communication between the Transducer
and the Consumer, however, it can be seen that their transactions are
essentially backward-directed. As such, it might be hoped that things
would work out as for the approach where the entire system was based on
a backward-~directed pattern -~ i.e., that the Consumer will terminate
exceptionally by attempting to communicate with the Transducer cnce this
latter has terminated. Unfortunately, we are in for a very rude shock:
this will not work at all, because the Transducer task has not in fact
terminated; rather, 1t is merely waiting to do so once 2all other tasks
at this level have either terminated or are also waiting on such an
alternative. But in this situation, the Consumer task 1is neither
terminated nor in a quiescent state. Instead, it is actively soliciting
further data from the Transducer (and thus waiting for that entry call
to be completed). Hence, the system as a whole will eventually become
suspended in the state described, and so never shut down. This
inevitable deadlock provides a very vivid illustration of the pitfalls
associated with the implicit termination mechanism of Ada. In
particular, it serves to underscore the need to reason on a global basis
(considering all component subtasks) whenever this would-be convenience
is employed anywhere in the definition of a given system. Having learned
a 1lesson, we shall henceforth forgo the use of this feature altogether.

We are nonetheless left with a quite viable option for achieving
graceful shutdown, which is to introduce additional termination signals
where necessary (for forward-directed trinsactions); since this approach
allows the termination of a downstream process to be programmed
explicitly, we may then rely on exceptional termination in the context
of backward-directed transactions. Thus, our overall, inward-directed
configuration would then be respecified as follows:

o
(13
0
<
~
=)
[wN
3
s
m
(%]
~

]
]
'

Producer | Consumer
L

t]
] [}
i !
! Transducer |{emecececcccccccccc==
d i
1]
]]

This diagram gives rise to the following task declarations and bodies:

task Producer;

task Transducer is
entry Send(A:in ARG);
entry EoT;

entry Recv(R:out RES);
end;

task Consumer;

-37-

73

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...;
begin
for N in range ... loop
Acquire(AA);
Transducer.Send(AA);
end loop;
Transducer .EoT;
end Producer;

task body Transducer is

AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...;
begin
loop
Select
accept Send(A:in ARG) do
AA := A
end;
Transform(AA,RR);
accept Recv(R:out RES) do
R := RR;
end;
or

accept EoT; exit;
end select;
end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...;
begin
loop
Transducer .Recv(RR);
Dispose(RR);
end loop;
end Consumer;

This definition does indeed combine aspects of both the forward-directed
solution (based on explicit signals) and the backward-directed solution
(involving exceptional termination) in order to shut down the overall
system, just as we expected at the outset. (Analogous modifications
could easily be introduced in the context of optional formulations for
the Transducer as discussed above, if it were ’'desired to partially
restrict the degree of logical concurrency within the system).

-38-

e o CHUTHI

3.2.4. Qutward=-Directed Communication

We shall now consider the fourth and last of the simple structures
for our example system which were originally proposed in Fig. 3-2,
depicted as follows:

! Recv(A:out ARG)
Producer |

'

1

1

i
Transducer |ewecececccccaccacea= >! Consumer

H

1

1

This pattern of communication was referred to as "outward-directed,”
because the flow of control goes from the inside out (though information
still flows from left to right). Like the inward-directed approach just
considered, the above pattern may also be said to be symmetric. It can
be seen that in this instance, the initiative lies entirely with the
Transducer process, since both the Producer and Consumer processes play
an essentially passive role. Such an approach may seem, in some
respects, to be the most intuitive of all, particularly if one were to
think of the overall application program as being primarily embodied in
the Transducer, and to view the Producer and Consumer solely as
abstractions for some input source and output sink, respectively.

This viewpoint 1is once more reflected in our characterization of
the configuration shown above: the Transducer is now the only activity
in the system, whereas both the Producer and the Consumer are pure
resources; thus, no process plays the mixed role of an intermediary in
this organizational structure.

As usual, the above diagram serves as a specification for the
desired communication pattern, from which we may derive declarations for
the Ada tasks representing the constituent processes in the present
configuration:

task Producer is
entry Recv(A:out ARG);
end;

task Transducer;

task Consumer is
entry Send(R:in RES);
end;

bk

3.2.4.1. Steady-State Operation

According to our well established method, we shall first define
the steady-state operation of the system, so as to exhibit the
outward-directed pattern under consideration. In their simplest form,
the associated task bodies would be as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) 'is ...;
begin
loop
Acquire(Ad);
accept Recv(A:out ARG) do
A := AA;
end;
end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES);
begin
loop
Producer .Recv(AA);
Transform(AA,RR);
Consumer.Send(RR);
end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...;
begin
loop
accept Send(R:in RES) do
RR := R;
end;
Dispose(RR);
end loop;
end Consumer;

This formulation is to be compared with that introduced initially for
the inward-directed pattern considered previously: as might be expected,
they differ only that the entry calls and accept statements have again
been inverted, thereby reversing the direction of communication.

-40-

|
|
|

Consistent with our overall objectives, this first definition {is
specifically intended to preserve the highest possible degree of logical
concurrency within the system as a whole, whence information is
transmitted between communicating processes by means of explicit copies.
Again, however, one might wish to consider coupling the operation of
these processes more tightly in certain circumstances, so as to be able
to avoid such copying. This could be selectively accomplished by 1
reformulating either the Producer or the Consumer task bodies as
follows:

task body Producer is -~-Option 1
procedure Acquire(A:out ARG) is ...;
begin
loop .
accept Recv(A:out ARG) do
Acquire(A);
end;
end loop;
end Producer;

task body Consumer is «-QOption 2
procedure Dispose(R:in RES) is ...;
begin
loop
accept Send(R:in RES) do
Dispose(R);
end;
end loop;
end Consumer;

With Option 1, the Transducer is held in rendezvous with the Producer
while each new argument 1is acquired, thereby avoiding a copy of this
information on input but sacrificing potential overlap of ¢the data
acquisition and transformation operations. Option 2, on the other side,
is analogous: the Transducer 1is held in rendezvous with the Consumer
while each successive result is disposed of, thereby avoiding a copy of
this information on output but sacrificing potential overlap of the data
transformation and disposition operations. From the standpoint of |
program design, it may or may not be advantageous to resort to one of
these options in a given applications context. What must be emphasized,
however, is that if both options are exercised together, then the
operation of the overall system will in fact become completely ﬁ
sequential (and so might just as well have been formulated as a single
process in the first place).

-41-

77

‘hT

3.2.4.2. Startup and Shutdown

As always, we must now complete our definition for the system
configuration currently considered by adapting the initial steady~state
formulation so as to address the problems of startup and shutdown.
Startup again requires no further attention, whence we need only be
concerned with graceful shutdown.

Keeping still to the simple input-driven strategy adopted thusfar,
we know that we must begin by first making suitable provisions within
the Producer process, such that the corresponding task will terminate
normally when all input arguments have been transmitted. Looking then
to the downstream processes, we should like to be able to reason in
terms of the separate transactions involved, between the Producer and
the Transducer and between the Transducer and the Consumer,
respectively. As for the former, we observe that their pattern of
communication is backward-directed, whereupon we may make use of the
exception mechanism to trigger termination of the Transducer task (once
the Producer refuses to accept any further communication). With regard
to the communication between the Transducer and the Consumer, their
transactions are forward-directed. As such, we must either rely upon the
built-in termination mechanism of Ada, or introduce an explicit signal
in order to properly terminate the Consumer task. Having advised against
use of the 1implicit mechanism (even though it would work in this
particular instance), we shall thus opt here for explicitly programmed
termination. The overall specification for the present system
configuration may therefore be established as follows:

Send(R:in RES)

x
(]
0
<
~~
=
o
c
ct
b
=
(]
~s
]

]

[}

)

|

]

}

[}

|

]

]

[}

]

[}

[}

]
v

1
'
1
i
Producer |{-eeccacceacaecaaaaa
i
t
t

1
1
1
|
Transducer | ! Consumer
i
]
1

v

The corresponding task declarations (adding the EoT entry to the
Consumer) would therefore become:

task Producer is
entry Recv(A:out ARG);
end;

task Transducer;
task Consumer is
entry Send(R:in RES);

entry EoT;
end;

U2

727

The constituent processes would then finally be defined as follows:

task body Producer is

AA: ARG;
procedure Acquire(A:out ARG) is ...;
begin

for N in range ... loop
Acquire(AA);
accept Recv(A:out ARG) do
A := AA;
end;
end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...;
begin
loop
Producer.Recv(AA); -- can fail!
Transform(AA,RR);
Consumer.Send(RR);
end loop;
exception
when others => Consumer.EoT;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...;
begin
loop
select
accept Send(R:in RES) do
RR := R;
end;
Dispose(RR);
or
accept EoT; exit;
end select;
end loop;
end Consumer;

By explicitly handling the exception raised by the Producer, the
Transducer takes local responsibility for closing out its transactions
with the Consumer; a further consequence of this approach is that all
processes of the system turn out, in the end, to terminate normally.

-43-

Gk - v Y L Ao b ' A WAE i kel C . e

3.3. Alternative Shutdown Strategies

In each of the simple patterns of interprocess communication
considered up to this point, ‘we have seen that our requirement for
graceful shutdown of the overall system gave rise to a need for further
synchronization. As such, the problem of proper termination always
played a crucial role in establishing the final program design. In
several instances, it ultimately led us to modify the initial pattern of
communication by adding explicit signals so as to be able to achieve the
desired effect; 1ir others, we were content to rely upon an implicit
signal, corresponding to the built-in exception whieh 1is raised by
trying to communicate with a task that has already te:iinated. Whereas
the "best" solution differed according to the particular communication
pattern chosen as a point of departure, with every approach our design
was not complete until we had adequately addressed the problem of
synchronous shutdown.

It should be remembered, however, that we have so far examined
just one possible basis for shutting down the simple system taken as our
example -- namely, to terminate execution of the entire application once
it has somehow been determined that all available input items have been
processed to completion (a strategy which we have thus referred to as
"input-driven"). While this is certainly a reasonable basis, it must be
recognized as only one amongst many alternative strategies that are
commonly adopted in practice. Before attempting to draw any general
conclusions in this regard, it would therefore seem advisable to explore
various alternative approaches. In so doing, we shall abandon our usage
of a simple loop counter, and instead express the termination decision
in terms of a 1local predicate on the data itself, which determines
whether some appropriate (but unspecified) "cuf-off" criterion has been
attained. This (presumably more realistic) formulation would have
appeared, 1in the contert of the input-driven approaches already
considered, as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...;
function CutOff(A:in ARG) recurn BOOLEAN is ...;
begin
loop
Acquire(AA);
exit when CutOff(AA);
(Transmit AA to Transducer]
end loop;

end Producer;

T

Fo

3.2.1. Input-Driven Strategy

In that this alternative was adopted as a basis for discussion of
system shutdown in the previous section, a number of distinct solutions
have already been developed there. These are summarized in Fig. 3=3.

(1) Forward-Directed:

[}
I
|
1
|
[}
|
[}
[}
[}
]
[}
[}
[}
]
]
A4

]]
]]
i i
Producer | i Transducer | { Consumer
i H
]]
I]

{ (2) Backward-Directed:

Recv(A:out ARG)? Recv(R:out RES)?!

N
N

Producer |({--wececececcaacaca- Transducer |{eeececcccccccaaaa i Consumer
']
i !
(3) Inward-Directed:
| i Send(A:in ARG) | | 1 !
! emmeccccccm————- >! ! Recv(R:out RES)?| |
i Producer | i Transducer |{(-—-ccececccececaaa-- ! Consumer |
! Rt T ettt > ! ! '
; i EoT : 4 H g
(4) Outward-Directed:
i i Send(R:in RES) '
Recv(A:out ARG)?! e mcccccccece—= >
Producer |{--cececacacaaaaa-- i Transducer |

A

t
t
1
)
! Consumer
i
]
]

Figure 3-3: Possible Communication Patterns for Input-Driven Strategy.

The symbol "?" in the above specifications is a convention to be used
from here on to indicate transactions that are expected to fail (i.e.,
to result in the raising of an exception) upon termination of the
cerresponding server process.

-45-

T

3.3.2. OQutput-Driven Strategy

We wish now to explore anmother equally common strategy for
. shutting down pipeline systems 1like the present example, namely to
terminate execution once some cut-off criterion has been detected on the
output side. We therefore refer to this alternative as "output-driven,"
in that the determination is made by the process which lies at end of
the line. Thus, in this instance the decision is to be embodied in the
Consumer, which will have the following skeleton form:

task body Consumer is
RR: RES:
procedure Dispose(R:in RES) is ... ;
function CutOff(R:in RES) return BOOLEAN is ... ;
begin
loop
... [Receive RR from Transducer] ...
exit when CutOff(RR);
Dispose(RR);

o MeeTT EERE T TE sRe T T T T

end.loop;

end Consumer;

The fundamental problem which arises in this context is that a suitable
termination signal must somehow be propagated back upstream -- against
the flow of information -- so as to systematically shut down the
processes that are passing along, and ultimately generating, the data
items in the pipeline.

Whereas we still want to impose a requirement for graceful
shutdown of our overall system, as we did in the context of a simple
input-driven approach, some care must now be taken to define exactly
what we mean by gracefully. Previously, we required that all items which
entered the pipeline were processed to completion before proper
termination. If we were to make the same demand for an output-driven
strategy, it would have one of two implicatons: either the operation of
these communicating processes must be so tightly coupled that the
ultimate consumer can immediately cut off further data generation at the
source (which would effectively preclude any logical concurrency
Wwhatsoever); or, alternatively, the final process must be prepared to
accept additional data items, after the cut-off condition has been
detected, so as to allow the pipeline to be progressively drained. We
choose to reject both of these possibilities, and instead to require
cnly that no further items will be received by the Consumer and that all
of the constituent processes will eventually terminate in a proper
fashion, such that the system as a whole can be shut down synchronously.
Hence, in terms of the bucket-brigade 2znalogy, we are willing to admit
that "some water will be spilled" once the decision has been made.

-Ufa-

From our previous experience in the context of an input-driven
strategy, we know that there are in fact four different solutions which
might be considered, based on the particular pattern of communication
which is adopted for the steady-state operation of the sysiem as a
whole. These four possibilities are as specified in Fig. 3-4.

(1) Forward-Directed:

Send(R:in RES)?

]
]
[}
[]
)
]
1
]
]
]
]
]
]
[}
[}
'
v

Producer |ececececcccccncea= >! Transducer Consumer

1 [}

: |

] 1
(2) Backward-Directed:
! i Recv(A:out ARG) | ! Recv(R:out RES) ! '
i R et T g |{mmmemmccccacccaa ' '
\ Producer | ! Transducer | ! Consumer |
; R latate : |{mmmcccccccccccae ' !
| ! EoR ! ! EoR ' H
(3) Inward-Directed:
! ; ' ! Recv(R:out RES) | ‘
{ i, Send(A:in ARG)? | HE S comaa! !
! Producer |eceacececccacaaea- >! Transducer | ! Consumer |
|) 1 R e H '
i ! ! ! EoR H i
(4) OQutward-Directed:
! i Recv(A:out ARG) ! g ! :
| R ' ! Send(R:ina RES)? | '
! Producer | ! Transducer |eeeccececacea -w==>! Consumer |
! ettt] ' ! !
H i EoR] g i :

Figure 3-4: Possible Communication Patterns for Output-Driven Strategy.
It may be observed that each configuration depicted in Fig. 3-U4
corresponds to the mirror image of that for the opposite communication

pattern in the input-driven context (cf. Fig. 3-3), which is 1indicative
of the true relationship between these zlternative shutdown strategies.

~U47-

83

s o e A 4 Cpeesn s SRS et e

T

From the specifications in Fig. 3-4, we can directly derive the
corresponding task declarations for each of these four solutions:

(1) Forward-~Directed: task Producer; ~- an activity
task Transducer is
entry Send(A:in ARG);

end;

task Consumer is ~=- a resource
entry Send(R:in RES);

end;
(2) Backward-Directed: . task Producer is ~-- a resource
entry Recv(A:out ARG);
entry EoR;
end;

task Transducer is
entry Recv(R:out RES);

entry EoR;
end;
task Consumer; -~ an activity
(3) Inward-Directed: task Producer; ~-- an activity

task Transducer is -- 3 resource
entry Send(A:in ARG);
entry Recv(R:out RES);

entry EoR;

end;

task Consumer; -=- an activity

(4) Qutward-Directed: task Producer is -=- 3 resource

entry Recv(A:out ARG);
entry EoR;

end;

task Transducer; -= an activity

task Consumer is -=- 2 resource
entry Send(R:in RES);
end;

We shall now present the associated process definitions for all four
solutions in turn, formulated so as to maximize the logical concurrency.

-48-

- - - > L ettt . o . N - - N

e e il o i am el

g5

(1) For the forward-directed pattern, the definitions are as follows:

task body Producer is

AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire(AA);
Transducer.Send(AA); -- ?
end loop;

end Producer;

task body Transducer 1is

AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ... ;
begin
loop
accept Send(A:in ARG) do
AA := A;
end;
Transform(AA,RR);
Consumer .Send(RR); -~ ?
end loop;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ... ;
function CutQOff(R:in RES) return BOOLEAN is ... ;
begin
loop
accept Send(R:in RES) do
RR := R;
end;
exit when CutOff(RR);
Dispose(RR);
end loop;
end Consumer;

The above definitions directly exhibit how the shutdown signal is
propagated back upstream (and the "spillage" involved). Once a result is
received which satisfies the cut-off criterion, it is not disposed of by
the Consumer, but rather this process simply terminates. In consequence,
the next (already transformed) item in the pipeline will not be
successfully transmitted by the Transducer, but instead this process
will also terminate /exceptionally). Finally, the same fate awaits the
last argument acquired by the Producer, where an unsuccessful attempt to
transmit that item again leads to exceptional termination -- and thus to
shutdown of the entire system.

-49-

i,

rm,_ , - , ————

(2) For the backward-directed pattern, the definitions are as follows:

task body Producer is

AA: ARG;

procedure Acquire(A:out ARG) is ... ;
begin
1 loop
Acquire(Aad);
select

accept Recv(A:out ARG) do

A := AA;

A end;

or
accept EoR; exit;
end select;
end loop;
end Producer;

task body Transducer 1s
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ... ;
begin
loop
Producer.Recv(AA);
Transform(AA,RR);

select
accept Recv(R:out RES) do
R := RR;
end;
or

accept EoR; exit;
end select;
end loop;
Producer .EoR;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...
function CutOff(R:in RES) return BOOLEAN is ... ;
begin
loop
Transducer.Recv(RR);
exit when CutOff(RR);
. Dispose(RR);
- end loop;
: Transducer .EoR;
end;

A 2.4

7o e e R At Tt AN 3 - 8t LA i s M, e R SR O o s TN

(3) For the inward-directed pattern, the definitions are as follows:

task body Producer is

AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire(AA);
Transducer.Send(AA); -- ?
end loop;

end Producer;

task body Transducer is

AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ;
begin
loop
accept Send(A:in ARG) do
AA := A;
end;
Transform(AA,RR);
select i
accept Recv(R;out RES) do ;
R := RR; ;
end; ?
or ‘
accept EoR; exit; -
end select;
end loop;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...
function CutOff(R:in RES) return BOOLEAN is
begin
loop
Transducer .Recv(RR);
exit when CutOff(RR);
Dispose(RR);
end loop;
Transducer.EoR;
end;

The difference betweer the input-driven and output-driven strategies can
perhaps best be seen here by comparing the structure of the Transducer
as defined above with its corresponding formulation at the end of

Section 3.2.3.2 (note, however, that their steady-state operation is in
fact identical).

-51=

(4) For the outward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire(Ad);
select
accept Recv(A:out ARG) do
A = AA; '
end;
or
accept EoR; exit;
end select;
end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is
begin
loop
Producer.Recv(AA);
Transform(AA,RR);
Consumer.Send(RR); ~- ?
end loop;
exception
when others => Producer.EoR
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ... ;
function CutOff(R:in RES) return BOOLEAN is
begin
loop
accept Send(R:in RES) do
RR := R;
end;
exit when CutOff(RR); *
Dispose(RR);
end loop;
end Consumer;

The difference between the input- and output-driven shutdown strategies

is even more evident here when the Transducer as
compared with 1its counterpart as formulated at
3.2.4.2.

-52-

defined above is
the end of Section

3.3.3. Transit-Driven Strategy

Another shutdown strategy that is typically encountered 1in the
context of pipeline systems like our present example (and the last to be
considered 1in detail here) is one in which the termination decision is
made somewhere in passage, by one of the processes serving to convey
successive data items from their original source to their final
destination. We therefore refer to this particular alternative as
"tran:tit-driven."

Within the current framework, such a strategy necessarily implies
that the determination must be made by the Transducer process. For
purposes of 1illustration, we shall adopt yet another approach for
programming the actual decision -~ namely to add an additional output
parameter to the transformation procedure, which serves as a "status
return" (i.e., indicating whether or not the transform in question was
successful, according to some purely internal criterion). Thus, the
definition of the Transducer process will then appear in skeleton form
as follows: :

task body Transducer is
AA: ARG;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is ...;
begin
loop
... [Receive AA from Producer] ...
Transform(AA, RR, OK);
exit when not OK; A
... [Transmit RR to Consumer] ...
end loop;

end.iransducer;
Expressed in this fashion, the Transducer may be viewed as a "valve," in

that it acts to shut off the flow of information once a2 certain (locally
defined) termination condition has been detected.

The strategy now considered can be seen as more of a mixed one,
combining aspects of both the input-driven and output-driven approaches
introduced previously. In particular, the application should be expected
to behave like an output-driven system on the upstream side (before the
decision is made) and like an input-driven system downstream from there.
Hence the requirement for graceful shutdown to be imposed here will be
taken to exactly reflect these expectations.

Again, we know that there are in fact four separate solutions, all
of which might be deemed equally acceptable. These possibilities, based
on different patterns of communication for the steady-state operation of
the overall system, are as specified in Fig. 3-5.

(1) Forward-Directed:

Send(R:in RES)

] [} 1 (]
]]] |
i i Send(A:in ARG)? ! !
i Producer i ---------------- >} Transducer | i Consumer |
: i i R ettt > '
H g H ! EoT i i
(2) Backward-Directed:

' ! Recv(A:out ARG) | | H i
g G e T H ! Reev(R:out RES)?| !
i Producer | i Transducer |((ececcemcmccccacaa i Consumer |
| e ' H ' !
d { EoR : : | d
(3) Inward-Directed:

: : ' H ' H
H ! Send(A:in ARG)? | ! Reev(R:out RES)?! !
! Producer |ecececcacncccaaaa >! Transducer |<{e~-cccccccmmcccaa- ! Consumer !
] 1}) 1) 1
‘) ' | ' '
t 1] 1]]
(4) Outward-Directed:

! i Recv(A:out ARG) ! { Send(R:in RES) ! '
; R ! e > !
| Producer | ! Transducer | ! Consumer |
! j{mmmmcccacccaaaa- ' R i > ;
i i EoR ! ! EoT ! !

Figure 3-5: Possible Communication Patterns for lransit-Driven Strategy.

The configurations specified above do indeed depict the mixed nature of
a transit-driven shutdown strategy: in all four patterns, the
transactions on the left are the same as for the output-driven approach
(cf. Fig. 3-4), whereas those on the right are the same as for the
input-driven case (cf. Fig. 3-3).

-54-

Fe

We can again directly derive the corresponding task declarations
for each of these four solutions from their specifications in Fig. 3-5.

(1) Forward-Directed: task Producer; -~ an activity

task Transducer is
entry Send(A;in ARG);
end;

L task Consumer is -~ a resource
1 : entry Send(R:in RES);
; entry EoT;
- end;
(2) Backward- Diﬁicted task Producer is -=- a resource
entry Recv(A:out ARG);
_i entry EoR;
] - end;

task Transducer is
entry Recv(R:out RES);

kS
= end;

task Consumer; -= an activity

(3) Inward- DlrectedB task Producer; -= an activity
<ff task Transducer is -- a resource
< entry Send(A:in ARG);

entry Recv(R:out RES);

end;
" task Consumer; -- an activity
(4) Cutward-Directed: task Producer is -=- a resource
entry Recv(A:out ARG);
entry EoR
end;

task Transducer; -=- an activity

task Consumer is -= a resource
entry Send(R:in RES);
. entry EoT;
- end;

We once more present the associated process definitions for all four
solutions, formulated as before so as to maximize logical concurrency.

-55-

g/

ro e . ST e CaByeo. ARAYRAL TWT S b — L Swma—as = . e
t, ¥ .

(1) For the forward-directed pattern, the definitions are as follows:

task body Producer is

AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire (AA);
} Transducer.Send(AA); -=- ?
end loop;

end Producer;

task body Transducer is

AA: ARG;

RR: RES;

OK: BOOLEAN;

procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is ... ;
begin

loop

accept Send(A:in ARG) do
AA := A;

end; ;

Transform(AA, RR, 0K);

exit when not OK;

Consumer.Send(RR); ‘
end loop; /
Consumer .EoT;

end Transducer; ; {

task body Consumer is
RR: RES;
procedure Dispose(R:in P
begin
loop
select
accept Send(R:in RES) do
RR := R;
end;
Dispose (RR);
or
Accept EoT; exit;
end select;
end loop;
end Consumer;

———

r' T I e crramactrrt o e

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is

: begin

loop
Acquire(Ad);
select
accept Recv(A:out ARG)
A := AA;
end;
or
accept EoOR;
end select;
end loop;
end Consumer;

do

exit;

task body Transducer is
AA: ARG;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARG; R:out
begin
loop
Producer.Recv(AA);
Transform(AA, RR,
exit when not OK;
accept Recv(R:out RES) do
R := RR;
end;
end loop;
Producer .EoR;
end Transducer;

0K);

task body Consumer is

RR: RES;
procedure Dispose(R:in RES) is
begin
loop
Transducer.Recv(RR); -= 2
Dispose(RR);
end loop;

- end Consumer;

-57~

73

RES; S:out BOOLEAN) is

(2) For the backward-directed pattern, the definitions are as follows:

AD-A124- 012 USING SELECTED FEATURES OF ADA: A COLLECTION OF PAPERS ;/3
(U) BATTELLE COLUMBUS LABS OH N HABERMAN ET AL.
N 09 NOV 82 DAAG29-76-D-0100
UNCLASSIFIED F/G 8/2

NL

A

flie £ 2
] E s m% 4
)

13
SF
-~

e
2

=
E
—

I

o

E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B e Lo = -t

{

(3) For the inward-directed pattern, the definitions are as follows:

task body Producer is

AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loop
Acquire (AA);
Transducer.Send(AA); =-- 7
end loop;

end Producer;

task body Transducer is
AA: ARG;
RR: RES;
OK: BOCLEAN;
procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is

begin
loop
accept Send(A:in ARG) do
AA := A;
end;

Transform(AA, RR, OK);
exit when not OK;
accept Recv(R:out RES) do
R := RR;
end;
end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ... ;
begin
loop
Transducer .Recv(RR); == ?
Dispose(RR);
end loop;
end Consumer;

[}

(4) For the outward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ... ;
begin
loo0p
Acquire(AA);
select
accept Recv(A:out ARG) do
A 1= AA;
end;
or
accept EoOR; exit;
end select; -
end loop;
end Consumer;

task body Transducer is

AA: ARG;

RR: RES;

OK: BOOLEAN;

procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is
begin

loop

Producer.Recv(AA);
Transform(AA, RR, OK);
exit when not 0K;
Consumer.Send{(RR);

end loop;

Producer .EoT;

Consumer .EoR;

end Transducer;

task body Consumer is

. RR: RES;
procedure Dispose(R:in RES) is ... ;
begin
loop
select
accept Send(R:in RES) do
RR := R;
end;
Dispose (RR);
or

Accept EoT; exit;
end select;
end loop;
end Consumer;

-59-

At e C e e e T,

3.3.4. Other Péssible Strategies

We have not yet exhausted all possible shutdown strategies. For
instance, one could adopt an "extrema-driven" approach, wherein the
termination decision 1is made by either the input or output process
(applying completely independent criteria). This would give a
"superposition" of those previous strategies, as specified in Fig. 3-6.

(1) Forward-Directed:

! Send(R:in RES)?
]

' []
]]
]]
]]
Producer | i Transducer | i Consumer
1 H
] []
] t

N
[]
]
[}
]
]
1
1
]
[}
]
[}
[}
]
]
]
[}

1] 1
]]]
H i i
i Producer | ¢ Transducer | i Consumer
: i]
1) [}
] 1 \

(3) Inward-Directed:

1 1
1 1
) 1
]]
Producer | { Transducer | { Consumer
' H
] 1
t 1

[}
1
[}
[}
|
]
[}
]
]
]
1
1
]
]
[}
I
v

Transducer

s/
e §
(o]
Q
c
(9]
o
3

N

]

[}

[}

]

]

]

[}

]

]

]

]

}

[}

[}

]

1

1

1

[}

]

]

[}

1

[}

1

]

]

]

]

[}

I

|

v

[}
]
]
]
! Consumer
)
]
]

Figure 3-6: Possible Communication Patterns for Extrema-Driven Strategy.

We feel confident, however, that the programming of these (or any other)
composite solutions in Ada can by now be left as an exercise for the
reader,

-60-

7¢

TUTORIAL ON ADA EXCEPTIONS

by

David B. Loveman

30 March 1981 4

TUTORIAL ON ADA EXCEPTIONS

by

David B. Loveman

This tutorial describes Ada's facilities for dealing with
exceptional situations, such as errors, and provides examples of the use
of these facilities. "An excegtion is an event that causes suspension of
normal program operation. rawing attention to the event is called
raising the exception. Executing some actions, in response to the
éccurrence of an exception, is called handling the exception.” [LRM]

hapter 11.

THE ROLE OF EXCEPTIONS

The ability of a program to handle certain exceptional situations
is essential. Such situations, typically but not necessarily errors,
occur rarely, but are likely to happen given enough ¢time. A survey,
taxonomy, and presentation of language features for exceptions is given
in [Goodenoughl]. Ada's approach is-defined in the [LRM], Chapter 11,
and discussed in the [Rationale], Chapter 12.

The Concept of Exceptions

[Goodenough] observes that, in general, an exception's full
significance 1is known only outside the detecting operation; the
operation cannot determine unilaterally what is to be done after an
exception is raised.

In essence, exceptions permit the wuser of an operation to
extend an operation's domain (tre set of inputs for which
effects are defined) or its range (the effects obtained when
certain 1inputs are processed). Exceptions permit a user to
tailor an operation’s results or effects to his particular
purpose in using the operation. In short, exceptions serve to
generalize operations, making them usable in a wider variety
of contexts than would otherwise be the case. Specifically,
exceptions are used:

(a) to permit dealing with an operation's impending or
actual failure. Two types of failure are of interest:
range failure, and domain failure;

(b) to indicate the sigﬁificance of a valid result or the
circumstances under which it was obtained.

(¢) to permit an invoker to monitor an operation, e.g. to
measure computational progress or to provide

-3-

< _‘;{vt

additional information and guidance should certain
conditions arise.

[Goodenough] goes on to classify exceptions into three categories:

(a) ESCAPE exceptions, which require termination of the operation
raising the exception;

(b) NOTIFY exceptions, which forbid termination of the operation
raising the exception and require 1it35 resumption after the
handler has completed its actions; and

(c) SIGNAL exceptions, which permit the operation raising the
exception to be either terminated or resumed at the handler's
discretion.

[Steelman] specifically requires that the occurrence of an
exception cause a transfer to an appropriate handler without completion
of the operation in which the exception occurred. Thus Ada exceptions
are of the ESCAPE category only, and not of the NOTIFY or SIGNAL
categories; they serve only for error situations =and as terminating
conditions. It is worth mentioning that the NOTIFY and SIGNAL
capabilities for monitoring an operation can be realized in 2
straightforward manner wutilizing rendezvous. The general topic of
tasking in Ada is discussed by [Schuman].

The indication of the significance of a result can be implemented
using Ada exceptions. Such result classification information is usually
passed directly from callee to caller. As a result, a more natural
implementation wutilizes status variables as added parameters of call.
An example is given in a later section.

Error Exceptions

Errors can be subdivided into domain errors and range errors. A
domain error occurs when the inputs to an operation fail to pass some

Input assertion as to their acceptability. An example of such an input

assertion 1is the requirement that, in an operation to add together two
matrices, both matrices must be of the same size. A typical response to
a domain error 1is an attempt to TM"correct" the inputs and try the
operation again. Typically a domain error is detected before the
cperation performs any actions which need to be undone.

A range error occurs when an operation determines that its output
assertion for determining the validity of 1its result may not be
satisfied. This may occur in two ways, either definite failure of the
output assertion, or evidence that it <c¢an never be satisfied.
{Goodenough] gives examples of these errors:

44

definite failure
end of file on read
divergence in a numerical algorithm

evidence of failure
parity error on read
lack of convergence after a fixed amount of effort.

An operation 1in which a range error occurs will, in general, have
proceeded to the point where some side effects of the operation will
1) need to be undone.

Both errors require the ability to terminate an operation
) prematurely, perhaps allowing the operation the right to "clean up"
after itself. In the next section we shall review Ada's language
features for exception handling. Following that we shall discuss an
approach to the systematic wuse of exceptions, and present several
examples.

T — .A N —

ADA EXCEPTION HANDLING

The name of an exception is declared by means of an exception
declaration. An exception occurs as a result of being explicitly raised
by 2 raise statement or, more typically, as a result of being propagated
by subprograms, blocks, or language defined cperations. Exceptions azre
handled by user-written exception handlers placed at the end of a block
or subprogram, package or task body. When an exception 1is raised, the
execution of a handler replaces the execution of the unit in which the
exception occurred. The choice of a particular handler for an exception
is dynamic and can, in general, only be determined at run time.

Basic Features

A simple example showing the use of some of Ada's exception
facilities is given below:

ﬁ%;ERROR: exception;
begin
if SOME_CONDITION then

raise MY _ERRCR;
endif;

if SCME_OTHER CONDITION then
raise MY_ERROR;
endif; .

exception
when MY ERROR =>
¥ DO SOMETHING;
i raise YOUR_ERROR;
when others =>
DO SOMETHING ELSE;
raise; -
end;

The above example illustrates the declering, raising, re-raising,
and handling of an exception within a single piece of code, and the use
of others to indicate the handling of any exception save the ones
explicitly listed in the handler. The example does not illustrate:

built-in exceptions,
suppression of exceptions, or
- . propagation of exceptions.

Ae shall discuss these briefly now.

B e e —— M T — —ar

Built-in Exceptions

Ada predefines exceptions in two places, the package STANDARD and
the packages INPUT_OUTPUT and TEXT IO. Figure 1 summarizes briefly the
exceptions from package STANDARD. These exceptions in general correspond
to errors for which a simple fix is not possible. We shall see later
however that there are cases for which a fix-up and re-try is possible.
We are here not concerned with ¢the wuse of the exception attribute
FAILURE; its use is discussed in [Schuman].

Figure 2 summarizes the input/output exceptions. As with the
STANDARD exceptions, these should be considered as errors, and not used
in routine programming. For example, in order to copy one text file to
another, one should, for a termination test, use the function
END_OF_FILE and not the exception END ERROR, as shown in Figure 3. We
have 1ignored in this example the possibility that, as a result of a
mistake or system failure, a USE_ERROR, STATUS_ERROR, or DEVICE_ERROR
might occur; we shall discuss this more fully later,

CONSTRAINT_ERROR Raised upon violation of range, index,
or discriminant constraints; attempted
reference to a non-existent record component;
attempted reference through an access
value of null.

NUMERIC_ERROR Raised, for some machines, upon numeric
overflow or underflow.
SELECT_ERROR Raised when no alternative of a select
statement is open.
STCRAGE_ERROR Raised when insufficient storage space
remains for a task or new allocation.
TASKING_ERROR Raised when exceptions occcur during rendezvous.
'FAILURE A task attribute which is an exception.

Raising T'FAILURE causes an exception in task T.

Figure 1: Exceptions predefined in the language in package STANDARD

orrey e

e et e+ . —— T e

NAME ERROR Incorrect use of external file name
File already exists on call to CREATE
No such file exists on call to OPEN or DELETE

USE_ERROR Operation incompatible with external file properties
Attempt to lengthen a file via TRUNCATE
Attempt to WRITE to a protected file

STATUS_ERROR File not in proper status for an operation
File already open on.call to CREATE or OPEN
File not open on ¢all to CLOSE or READ
No external file associated with internal
file on call to NAME
No default file on call to CURRENT_INPUT

DATA_ERROR Value not defined on input
Value not defined on call to READ
Identifier not TRUE or FALSE on GET of BOOLEAN
Identifier not one of the enumeration literals
on GET of an enumeration type
(N.b. Cn a GET of a numeric type, if the value
is out of range, CONSTRAINT _ERROR is raised)

DEVICE_ERROR Malfunction of underlying system

END_ERROR Current read position is higher than end position
Attempt to READ or GET past end of file

LAYOUT_ERROR Incorrect text formatting
Attempt to SET COL greater than line length
Attempt to PUT 2 string larger than the line
Figure 2: Exceptions defined in packages INPUT_OUTPUT and TEXT_IO.

Surpression of Exceptions

By use of the pragma SUPPRESS, the check for some of the
conditions under which certain predefined exceptions are raised may be
suppressed. A summary of these check conditions is presented in Figure
y

Use of the pragma SUPPRESS is a recommendation to the compiler to
avoid compiling run time checks. The programmer has assumed the burden
cf guaranteeing exception-freeness of the code since, should an
exception occur whose run time check is suppressed, the results of the
program will be unpredictable.

~- the wrong way to do it
procedure COPY(F:IN_FILE; G:CQUT_FILE) is
C: CHARACTER;
begin
loop
GET(F,C);
PUT(G,C);
end loop;
exception
when ENC_ERROR => return;
end COPY;

As opposed to:
-~ the right way to do it

procedure COPY(F:IN_FILE; G:O0UT_FILE) is
C: CHARACTER;

begin
while not END_OF_FILE(F) loop
GET(F,C);
PUT(G,C);
end loop;
return;
end COPY;

Figure 3: END OF _FILE in lieu of END_ERROR

SUPPRESSible Check Programmer Guarantees

CONSTRAINT_ERROR exception

ACCESS CHECK access value not null
DISCRIMINANT CHECK variant record component exists
INDEX CHECK index constraint satisfied
LENGTH CHECK proper number of components
RANGE_THECK range constraint satisfied

NUMERIC_ERROR exception

DIVISION_CHECK divisor not zero
OVERFLOW_CHECK numeric operation does not overflow

STCRAGE_ERROP exception

STORAGE_CHECK sufficient space is available

Figure 4: Checks which may be suppressed

Propagation of Exceptions

An exception may be raised in a'program unit in two ways. It may
be explicitly raised by a raise statement, or it may be propagated by
program mits, including operators, executed by the given program unit.
For example, NUMERIC_ERROR will be raised both by the statement

raise NUMERIC_ERROR;
and by the expression
3/6 ...

Within a handler for the exception NUMERIC_ERROR, the excepticn may be
reraised, and passed to a higher level program by the statement

raise NUMERIC_ERROR; J
or the shorter

raise;

This second form is most convenient when processing anonymous exceptions
in a handler for others.

Once an exception is raised, an appropriate handler for it is
found according to the rules given in Chapter 11 of the LRM. Roughly
speaking, the rules are as follows:

1. An exception raised in a declarative part during elaboration is
propagated to the unit which caused the elaboration.

2. An exception raised in a sequence of statements is handled by a
local handler if present in the innermost Dblock or body
enclosing the statement which raised the excepti n.

(W)
.

An exception for which there is no 1local handler, or wnich
itself occurs within a handler, is propagated to the unit which
caused execution of the current unit, except from 2 task to its

invoker.
Figure 5 provides two examples which illustrate the difference between
exceptions raised in a declarative part =zand exceptions raised in an ﬂ

executable part. In short, exceptions raised 1in a2 declarative part)
. cannot be handled locally and must be handled by the invoker. Thus, in -
- generzl, one must be careful in order to fully encapsulate abstract dsta !
: types.

declare
MY_ERROR: exception;

begié.
declare
N: INTEGER := F();
begin

excéption
when MY ERRCR => ... -~ handler El
end;

L exception

.when MY ERRCR => ... -~ handler E2
end; -
-- if F raises MY_ERROR, it is handled by E2

declare
MY ERROR: exception;

begin
ééélare
N: INTEGER;

begin
N := F();

exception ‘
when MY ERROR => ... -- handler E1
end;
excepticn

when MY ERRCR => ... -~ handler EZ2

end;
-- if F raises MY _ERROR, it is handled by E1

Figure ©: Exceptions in declarative and executable parts

/&’(

This section presents a number of examples of the stylized use of
exceptions, derived from [Rationalel.

USES OF EXCEPTIONS

Multi-level Return

A typical problem involves a main 1 -2gram which controls the
repetitive ope-ation of some procedure. fhis procedure, in turn, can
depend on subordinate procedures, any one of which might develop an
error condition from which recovery is not possible. At the top level,
hcwever, recovery is possible by the expedient of abandoning the current
F data case and moving on to the next. In other words, whenever an

exception occurs, execution should be abandoned and control transferred
to a particular point. This is sometimes referred to as an T"up~stack
goto™.

T

In the following example, procedure P treats 20 matrices.
Treatment of a matrix involves reading it in, inverting it, and printing |
it out. The second level procedure INVERT may have a NUMERIC ERROR !
exception, which it transforms to the exception SINGULAR. This is
interpreted by procedure P as "abandon this case and go on to the next".

procedure P is
SINGULAR: exception;
procedure TREAT A MATRIX is
procedure INVERT(M: out MATRIX) is
begin
-~ may raise NUMERIC_ERROR
exception
when NUMERIC_ERROR =>
raise SINGULAR;
end INVERT;
begin -~ TREAT_A_MATRIX
READ(M);
INVERT(M); {
PRINT(M);
end TREAT_A_MATRIX;
begin -- P
for I in 1..20 loop
PRINT("ITERATION ",1);
begin
TREAT_A_MATRIX;
exception
when SINGULAR =>
PRINT(" singular -- on to the next case"):

end;
end locp;
end P;

-12-

ey

Clean Up

In a sequence of procedure czlls, the occurrence of an exception
causes termination of procedures in the dynamic call chain up to the
first procedure handling the exception. Procedures along the way,
although not fully processing the exception, may wish to express "last
wishes" in order to perform clean-up actions. The handler for others,
and the raise statement used to reraise the same exception in the
¢alling environment, can be used to obtain this effect.

Consider, for example, a procedure which performs some file
operestion:

procedure FILE OPERATION(FILE NAME:STRING) is
F: INOUT_FILE; B
begin
-~ initial actions
CPEN(F,FILE NAME);
~- perform work on the file
CLOSE(F);
~- final actions
end;

If an exception of any type should occur while the file is open, the
procedure FILE OPERATION will terminate, without closing the file.

This problem can be eliminated by rewriting the procedure,
enclosing the work to be done, which might cause an exception, within a
block. The block handles any exception by closing the file and reraising
the exception.

procedure FILE OPERATION(FILE_NAME:STRING) is
F: INOUT_FILE;
begin
-- initial actions
OPEN(F,FILE_NAME);
begin
-~ perform work on the file
exception
when others =>
CLOSE(F);
raise;
end;
CLOSE(F);
-- final actions
end;

e ————

Retry of an Operation

As pointed out earljier, certain types of range errors are,
potentially, intermittent. For example, an attempt to read a2 tape bdlock
may result in a momentary error. On rereading, the operation may be a
success. Given a low level READ TAPE operation which potentially raises
a TAPE_ERRCR exception, we can write a 1loop which will retry the
operation up to 10 times. If still unsuccessful, a higher level
exception MALFUNCTION is raised. Note the use of a block to, in essence,
scope exception handling to a single statement.

for I in 1..10 loop
begin
READ_TAPE(BLOCK);
exit;
exception
when TAPE_ERRCR =>
if I = 10 then
raise MALFUNCTION;
else
BACKSPACE;
end if;
end;
end loop;

Domain Extension

Exceptions which indicate domain errors can be used to, in effect,
extend the domain of a preexisting operation. For example, "/" on a user
defined floating point type REAL will not be defined for a denominator
of zero. By means of overloading, the definition of "/" for REAL
arguments can be extended:

function "/"(X,Y: REAL) return REAL is
begin

return STANDARD."/"(X,Y);
exception

when NUMERIC ERROR =>

return REAL'LARGE;
end;

-14-

EXCEPTIONS AND ABSTRACTIONS

Issues

A number of problems arise when one attempts to systematically use ‘
exceptions with packages in the implementation of abstractions. Ada
exceptions allow considerable freedom, and may be used in ways which do
not enhance the reliability of the code being produced. Three facts in
particular about exceptions must be dealt with in order to structure
their use:

1. Although exceptions are meant for error and other seldom
occurring conditions, they can be utilized as a "normal" control
structure. For example, one can program a block exit by means of
exceptions:

declare
BLOCK_EXIT: exception;
begin

i} SOME_CONDITION then raise BLOCK_EXIT; end if;
exceééion

when BLOCK_EXIT => null;
end;

2. An exception, if it can occur, is clearly one of the potential
external effects of a procedure or a package. There is no
language-mandated requirement that it be documented as such.
Clearly good programming style requires that any procedure or
package which implements an abstraction must have all of 1its
possible external effects documented. In the next section we
shall provide guidance for such documentation which, if
followed, will alleviate this and other problems.]

3. An exception may be propagated beyond the scope of its name, and
there it can be handled only by means of others. Indeed, an
exception may be propagated beyond the scope of its name, and
then back within its scope again. This is a consequence of the
fact that the search for a handler follows the dynamie call

chain and is 1illustrated by the following example from
[Rationale]:

/70

package D is
procedure A;

procedure B;

end;

procedure OUTSIDE is
begin

... D.A} ...
end;

package body D is
ERROR: exception;
procedure A is

begin

... raise ERROR; ...
end;
procedure B is
begin

OUTSIDE; ...
exception

when ERROR =>
-~ ERROR may be propagated by OUTSIDE calling A
end;
end D;

The Approach

The approach we recommend is fairly simple, and consists of three

parts:

1.

Code in such a manner that an exception never escapes an
encapsulation without handling and recasting into a form
appropriate for the abstraction. Thus an encapsulation boundary
serves as a firewall for runaway exceptions and automatic
propogation.

To assist with 1, code in a style which always specifically
names user exceptions, rather than depending on others. As a
firewall, at 1least all enapsulation boundaries will have
handlers for others. One style 1is to have a single,
program_wide exception GLOBAL_ERROR, which can be handled
explicitly when appropriate. The encapsulation firewall will
consist of

exception

when others => raise GLOBAL_ERRCR;
end;

-16-

V4

g

3. Carefully document the use of all exceptions. Our recommendation
for this is presented in the next section.

Exception Documentation

[Luckham] has observed that if selected assertions and exception
propagation declarations are added to Ades, Ada exceptions can be
specified well enough to a2llow the verifiation of Ada programs with

exceptions. We propose to utilize a variation on [Luckham]l's ideas in a
f form of structured commentary tc assist a reader in unjlerstanding a
program's use of exceptions.

Commentary on exceptions is potentially needed at four points in a
| program:

declaration of an exception,
. raising of an exception,
handling of an exception, and
propagation of an exception.

Fww =

[Luckham] observes that no formal commentary 1is needed at the
declaration or explicit raising of an exception. We feel, however, that
if the exception name, or assertion at the point of raising, is not
sufficiently descriptive, additional documentation 1is desirable. A
reasonable layout is:

E: exception; -- why does this exception exist?
begin ,
raise E; -- why is E raised?

Associated with each handler must be an assertion which will be
true when that handler is executed. A reasonable layout is

begin

exception
Qﬁén E => -- why are we here?
end;
Associated with the specification of each procedure which can
cropagate an exception must be a set of statements naming each exception

which might be propagated, and under what circumstances. A reasonable
layout is '

-17=

,7 >

—— - - Cla e

-- propagates E sometime
-- propagates E1 other t
-- propagates others oce

procedure P(...);

This form of commentary, in conjunction with
suggested, will make exceptions in a program easier

-18a

s
imes
assionally

the coding
to understand.

style

et s i s e s

EXAMPLES:

Result Classification

[Course] presents two examples of implementation of result
classification reporting. Package RECORD HANDLER defines an interface to
a simple file system; the procedure GET_VALID RECORD calls
GET NEXT_RECORD in <the package body which 1in turn calls GET within
TEXT_IO. If an attempt is made by GET to read past end of file, the
exception END ERROR is raised. Figure 6 shows an implementation in
which GET VALID RECORD transforms the END ERROR exception, which is
meaningful only to a user of TEXT_ 10, into the NO MORE_RECORDS
exception, which is meaningful to the user of RECORD_ HANDLER.

Figure 7 shows the implementation of RECORD_HANDLER 1in which
result <classification 1is done by using a status parameter, rather than
by raising an exception. GET_VALID RECORD has a second parameter,
END OF DATA. It must still handle the END_ERROR exception which it does
by appropriately setting END _OF DATA.

Observe that the END ERROR exception allows interaction between
the different levels of abstraction, GET and GET _VALID RECORD, while
bypassing the intervening GET NEXT RECORD 1level. An alternative
implementation would have GET NEXT RECORD test the value of the
END_OF FILE function and, when TRUE, pass this status result back to
GET_VALID_RECORD, avoiding the use of exceptions entirely.

package KRECORD HANDLER is

type ITEM_RECORD is ...;

procedure OPEN_FILES;

wrocedure CLOSE FILES;

procedure GET_ VALID RECORD (REC: out ITEM _RECORD);
-- propagates NO MORE RECORDS when file is empty

procedure WRITE_RECORD(REC: in ITEM_RECORD);

NO_MORL_RECORDS exception;
-- is raised by GET VALID RECORD

-- when the end of the input file is encountered.
end RECORD_HANDLER;

Figure 6 (First Part)

-19-

/7 &

R

with TEXT I0;
package body RECORD_HANDLER is
use TEXT_IO;

procedure GET_VALID RECORD (REC: out ITEM_RECORD) is
S: RECORD STRING;
LENGTH_ERFOR BOOLEAN;

begin
loop
GET_NEXT_RECCRD (S, LENGTH_ERROR);
if TENGTH ERROR or else not VALID_RECORD(S) then
WRITE_ ERROR _MESSAGE(S);
else
REC := CONVERT (S);
exit;
end if;
end loop;
-~ exit from loop occurs only when good record found
-~ or when an END_ERROR exception occurs in
-~ GET_NEXT_RECORD
exception
when END_ERROR => -~ GET in GET_NEXT RECCRD failed

raise NO MORE_RECORDS;
end GET VALID RECORD;
end RECTRD_HANDLER;

with RECORD_HANDLER;
procedure PROCESS RECORDS is -
use RECORD HANDLER;
ITEM: ITEM_RECORD; -- defined in RECCRD_HANDLER
begin
OPEN FILES;
loop
GET_VALID_RECORD(ITEM);
WRITE RECORD (ITEM)
end loop;
exception

when NO MORE RECORDS => -- GET_VALID_RECORD couldn't

CLOSE FILES;
end PROCESS_RECORDS;

Figure 6 (Continued)

T
|

[PPSR

.

. S — . N

package RECORD_HANDLER is
type ITEM _RECORD is ...;
procedure OPEN FILES;
procedure CLOSE FILES;
procedure GET_VALID RECORD (REC: out ITEM_RECORD;
END_OF DATA: out BOOLEAN)
procedure WRITE RECORD(REC: in TTEM_RECORD);
end RECORD_HANDLER;

{ with TEXT I0;
' package body RECORD _HANDLER 1is
use TEXT-IO;

procedure CET_VALID RECORD (REC: out ITEM RECORD;
END_OF_DATA: out BOOLEAN) is
S: RECORD_STRING;
LENGTH_ERROR: BOOLEAN;

begin
loop
GET_NEXT RECORD (S, LENGTH_ERROR);
if EENGTH ERROR or else not VALID_RECORD(S) then
WRITE ERROR _MESSAGE(S);
else :
REC := CONVERT (S); i
exit; 4
end if;
end loop;

-~ exit from loop only occurs when good record found

-- or when an END ERRCR exception occurs in

-~ GET_NEXT_RECORD

END_OF DATA = FALSE; -
exception

when END FRROR => -- GET in GET_NEXT_RECORD failed

END OF DATA := TRUE;

end GET VALID RECORD;
end RECORD _HANDLER;

Figure 7 (First Part)

-21-

774]

with RECORD HANDLER;
procedure PROCESS_RECCRDS is
use RECORD_HANDLER;
ITEM: ITEM RECORD; -- defined in RECORD_HANDLER
NO_MORE RECORDS: BOOLEAN;
begin -
OPEN_FILES;
loop
GET_VALID RECORD(ITEM,NO_MORE_RECORDS);
exit when NO MORE_RECORDS;
WRITE_RECORD(ITEM);
end loop;
CLOSE_FILES;
end PROCESS_RECORDS;

Figure 7 (continued)

¥ Queues

In [Habermann] an example is given of the use of generic packages
in the generation of 1isolated abstract objects that are not used in
conjunction with one another. The specific example chosen is a queue of
complex numbers. This example should, in fact, be extended to include

appropriate exceptions for queue overflow and queue underflow, as
follows

generic
QSIZE: INTEGER range 1..64;
type T is private;
package QUE 1is
CVERFLOW: exception; -~ attempt to ENQO a full queue
UNDERFLCW: exception; -~ attempt to DEQ an empty queue
procedure ENQ (ITEM: in T); -- L-opagates CVERFLOW
-~ when Queue is full
function DEQ return T; -~ propagates UNDERFLOW
-~ when Queue is empty

T nins i e L 06] L pinn T RO

end QUE

cackage body QUE 1is
FRONT,SIZE: INTEGER range O .. QSIZE :=z 0;
QBODY: array (1..QSIZE) of T;

procedure ENQ is ... end ENQ;
function DEQ 1is ... end DEQ;
#‘ end QUE;

If a wuser wants to create a queue of a particular size for a
particular type of elements (for complex numbers for instance), he
writes in his program the declaration:

package PlexQue is new QUE(QSIZE => 36, T => Complex.pair);

There may be many similar declarations in a program that each introduce
a new queue, Operations on the -example queue are denoted by
"PlexQue.ENQ(u)" and "PlexQue.DEQ", where "u" is a variable or
expression of type Complex. A similar example is found in [LRM] 12.4,

'F“P“ R e ’-"'.'-"-"--'-""-'-.-"‘-F~"-"-----w——-.!1

Matrices

Package MATRIX OPS provides a collection of matrix manipulation

facilities, including an example of the recommended documentation for
exceptions.

package MATRIX OPS is

type MATRIX is array (INTEGER range <>, INTEGER <>) of FLOAT;
SIZE_ERROR: exception; -- two matrices are not compatible

function "+" (M1, M1: MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if M1 and M2
-- are not the same size

function "*" (M1, M2: MATRIX) return MATRIX;
-- may raise exception SIZE_ERROR if the number

~- of columns of M1 is not equal to the number
-=- of rows of M2

end MATRIX_OPS;
A use of the MATRIX OPS package might be

declare
use MATRIX_OPS;
A,B: MATRIX (1..10, 1..20);

begin

A*B; -- may cause SIZE_ERROR

.
e e ey

- m
v n

This block does not have a local handler. Should SIZE_ERROR be raised,
it will be propagated to the enclosing unit,.

/g

package bcdy MATRIX_OPS is

end MATRIX_OPS;

function "+" (M1, M2: MATRIX) return MATRIX is
-- may raise exception SIZE_ ERROR
TEMP: MATRIX(M1'FIRST..M1'LAST, M1'FIRST(2)..M1'LAST(2));
ICFFSET, JOFFSET: INTEGER;
begin
if M1'LENGTH(1) /= M2'LENGTH(1) or
MI'LENGTH(2) /= M2'LENGTH(2) then
raise SIZE_ERRCR;

end if;
ICFFSET := M2'FIRST(1) - M1'FIRST(1);
JOFFSET := M2'FIRST(2) - M1'TIRST(2);

for I in MI'FIRST(1) .. MI1'LAST(1) loop
for J in M1'FIRST(2) .. M1'LAST(2) loop

TEMP(I,J) := M(I,J) + M2(I + IOFFSET, J + JOFFSET);
end loop;

return TEMP;
end "+";

function "#*" (M1, M2: MATRIX) return MATRIX is

-- may raise exception SIZE_ERROR
TEMP: MATRIX(M1'FIRST(1)..M1'LAST(1),M2'FIRST(2)..M2'LAST(2));
OFFSET: constant INTEGER := M2'FIRST(1) - M1'FIRST(2);
begin
if MI1'LENGTH(2) /= M2'LENGTH(1) then
raise SIZE ERROR;
end if; -
for I in MY'FIRST(1)..M1'LAST(1) loop
for J in M2'FIRST(2)..M2'LAST(2) loop
TEMP(I,J) := 0.0;
for K in M1'FIRST(2)..M1'LAST(2) loop
TEMP(I,J) := TEMP(I,J) + M1(I,K) * M2(K + OFFSET, J);
end loop;
end loop;
end loop;
return TEMP;

end "*";

-25-

r—

File Copy

The discussion of exceptions provided with ¢the input/output
packages presented a file copy example. A reasonable approach to this
problem is the inclusion of CCPY within a package of IO _UTILITIES, as
follows:
package IO _UTILITIES is

IC_UTILITY_ERROR: exception; -- raised for any exception in any
coe -- procedure in this package

procedure COPY(F: IN FILE; G:OUT FILE); -- may raise IO_UTILITY ERROR
end 10_UTILITIES;

package body I0 UTILITIES is

procedure COPY(F:IN FILE; G:OUT_FILE) is
-- may raise IO_UTILITY ERROKR
C:CHARACTER;
begin
while not END _OF FILE(F) 1loop
GET(F,C); -
PUT(G,C);
end loop;
return;
exception
when others => c
raise IO_UTILITY_ERROR;
end COPY:

end I0_UTILITIES;

~26=

’s7ay

.

e] A . I
‘ e —— . A LT - :

BI3LICGRAPHY

[Coursel

tGecocdenough]

{Habermann]

(LRM:

“Luckham]

TRationale]

"Schuman]

[S-eelman]

/2 I~

Ada - a Model! Course, develcped by Georgia

Tech tor LARFPA.

Goodenough, John B., Exception Handling: Issues
and a Proposed Notation, Comm. ACM 18, 12
(Dec 1975), 682-696.

Habermann, A.N., The Use of Ada Packages,
Carnegie Mellon University, November, 1980.

Reference Manual for the Ada Programming

Language, MIL-STD-1815, United States
Department of Defense, July 1980.

Luckham, D. C. and Polak, W., Ada Exception
Handling: An Axiomatic Approach, ACM Trans.
Program. Lang. System. 2,2 (April 1980) 225-233.

Rationale for the Design of the Green Programming
Language. Honeywell, Inc. March 1979.

Schuman, S., Tutorial on Ada Tasking,
CADD-8104-1601, Massachusetts Computer
Associates, Inc., March 198&1.

Department of Defense Requirements for High
Order Computer Programming Languages, "Steelman",
June 1978.

-27-

s/2 3

LOW LEVEL LANGUAGE FEATURES

by

Dewayne Perry

T are—————

Table of Contents

1. Low Level Language Features
1.1. Machine and Implementation Dependencies

1.2. Memory Oriented Interfaces

1.3. interrupts
1.4. Low Level 170 Package

1.5. Summary

/24

~

NOOONOO

™

e o

1. Low Level Language Features

This section describes Ada's tow level language features and provides examples to illustrate how
they might be used. In Section 1.1, we discuss the probiems of machine and compiler implementation
dependencies, indicating when portability is possible and when it is not. Section 1.2 contains an
example of memory oriented hardware interfaces, without interrupts. Section 1.3 extends this
example by introducing interrunts and how they are handled in Ada. The low level 170 features are
introduced in Section 1.4 and the example is rewritten to use these features of Ada.

1.1. Machine and Implementation Dependencies

In the construction of systems there are particular points where software must be written to
interface with hardware, e.g.. in managing the use of the processor or peripheral devices.
Historically, assembly language has been used at these points instead of higher level languages.
These programs written in assembly language are provided in cne of two ways. either as part of the
operating system that is used by the language or as part of the run-time support system for the
language.

In Ada, some of these points of interface (such as processor management) will be supplied by the
run-time support. The remaining points of interface are left to the system builder to design and
implement. Ada provides several ways of programming this interface. The system builder may use
the actual hardware interface or a slightly higher level of abstraction provided by the language or a
mixture of both. The choice is more or less determined by the machine with which to interface.

We discuss two major aspects of this interface that must be programmed: device interfaces and
instruction interfaces. We show where these interfaces are supported by the language and where
they require a higher level of abstraction.

Where the hardware interface takes the form of dedicated memory locations or densely packed
data records, Ada provides language features to explicitly describe the interface. Here the designer
uses that hardware interface directly and describes dependencies by specifying memory addresses
and record representations.

Actual instructions to devices may take either the form of memory references. as in the PDP-11 for
example. or, more typically the form of privileged instructions executed by the processor. In the case
of memory references, the Ada assignment statement provides the means of device instruction.
However, in the case of privileged instructions a slightly higher level of abstraction is required so that
the designer does not have to use the privileged instructions directly.

To this end, Ada provides a low-level 1/0 abstraction embodied in the LOW_LEVEL_{O package.

‘25~

Two procedures, SEMD_CONTROL and RECEIVE_CONTROL, replace the use of privileged
instructions which constitute the actual hardware interface. The data interface is also included in this
package as part of the encapsulation of the low-level interface. However, the system buiider need not
be concerned with the cata representation since it is hidden within the abstraction.

While the language features that deal directly with the hardware interface are part of the language
specification and, as such, are compiler independent, the LOW_LEVEL IO package is not part of the
language specification and is dependent upon the particular implementation. The Ada manual
provides a template which suggests the interface in very broad terms (i.e., that there are two
procedures and various data structures), but there is no standard for mapping the actual machine
interface onto these procedures and data structures. Thus, the low-level I/0 interface is susceptible

to extreme dependence upon particular compiler implementations.

The system designer is therfore confronted with two types of dependencies: machine interface
dependencies and compiler implementation dependencies. These dependencies affect the
implementors efforts to make the software portable to other systems.

In the case of machine dependencies, we are confronted with two levels of depencencies: the
device interface and the processor interface. The device interface is the set of interfaces such as
data and commands that interact directly with the device. The processor interface is the set of
facilities that may be required to actually control devices. In other words, the system designer may
have to use the processor interface because he cannot directly interact with the device.

Typically, each manufacturer supplies a device interface for any given device that is sufficiently
different from that of other manufacturers. It is not possible. therefore to write a generalized low-level
device handler. Thus. the designer is forced to rewrite the device handier for each manufacturers

device.

Even if device interfaces were identical across several manufacturers. processor interfaces afre
different for each manufacturer (and may even be dilferent for machines from the same
manufacturer) Thus. certain aspects of the low-level software may be portable while certain other
aspects may not be. For example, the use of the processor interface may not be portable. Where the
processor interface is directly available to the user and is covered by the language features of Ada,
such as address specifications, data representation specifications, memory references and
assignment, the software will not be portable.

The compiler implementation depcendent low-level 1/0 package has the potential to help resolve the
processor interface problems. Since the low-level |/0 package provides a higher level of abstraction
than the tare machine, the package could abstract the similarities and hide the differences in the

processor interfaces. if this abstraction occurs, then portability becomes feasible. However, the way
the package is implemented could complicate matters rather than simplifying them. Instead of hiding
the differences between various device and processor interfaces, the low-level 1/Q package would
compound the differences if the package interface specification were different for each compiler.
This would reduce the pocsibility of writing portable software. even where the software should be
portable, as for example on identical machines with identical devices but different compilers. C

Thus, while Ada provides a means of making the hardware interfaces visible, it does nct provide a
sufficient tevel of abstraction to hide the differences of these interfaces over a farge class of machines
and devices. Portable low-level software, as a result. will be extremely difficult to write.

1.2. Memory QOriented Interfaces

Data interfaces provided oy hardware are typically packed as densely as possible within the
processor's unit of memory reference. To map the representation of the high leve! description of ali
data interface onto the actual hardware {ayout, Ada provides record representatisn specification
facilities. To illustrate this we present a simplified card reader handler. The interface described here
is similar 1o that found in a PDP-11: a memory oriented interface. For reasons of simplicity. we will
use the status mechanism rather than the interrupt mechanism.

The handler illustrated here will be presented independently of such considerations as gaining
permission to use the card reader or viewing the card reader as a virtual resource (see the saction on

tasking).

Again, for purposes of simplification, assume the existence of a generic package.
CIRCULAR_BUFFER_NMODULE, that provides an abstract data type. Circular_Bulier., with the
operations Get and Put. Assuming that the buffer will only be used by a single procucer (the card
reader handier). and a single consumer (whoever is using the card reader), we need not concern
ourselves with synchronization or exclusion problems while we concentrate on the low level aspects
at hand.

generic type data is private;

package CIRCULAR_BUFFER_MODULE is
typeCircular_Bufter (i:natural) is private;
procedure Geat (cb : Circular_Buffer: d : out data);
procedure Put (cb ; Circular_Buffer; d ; data);

private
type Circular_Bufter (i: natural)is .. .;

end CIRCULAR_BUFFER_MODULE;

Essential to the card reader handler are (1) the Card Reader Status Register, a register that

contains the current status of the device and provides the possible commands to the devices; and (2)
the Card Reader Buffer Register, a register to specify the address of the buffer for input from the card
reader. These are hard wired registers located in what is often called “direct access memory”. The
registers are first described as types, objects are declared for the types and the representations and

locaticns are specified.

The handler itself is a task that loops forever. Inside the loop, it waits for the reader to become “on-
line”, the command is issued to read a card. and the handler waits for the card to be read. After
completion of the read. either errors encountered are processed or the card is "put” onto the circular
buffer. The package interface and the outline of the package body are introduced first.

package CARD_READER is
type CARD_Buffer is new string(1 . .80);
procedure Get_Card (b : out CARD_buffer);
end CARD_READER;

package body CARD_READER mis
CARD_CB_Module is new
CIRCULAR_BUFFER_MQDULE(CARD_Bufter);
—instantiate a circular buffer for cards
use CARD_CB_Butfer;
CB : Circular_Buffer (50);
- a circular buffer of 50 cards
task CR_Handler;
procedure Get_Card ... end:
task body CR_Handler ... end;
end CARD_READER,;

The primary interface procedure is Get Card which retrieves the oldest card from the circular buffer.

procedure Get_CARD (b: out CARD_Buffer) is
begin
Get(CB, b);
end Get_CARD:;

The task body fcr the Card Reader Handler contains the type definitions that are appropriate to the
device interface. Cbjects are declared for those device dependant types. Because there is a
separation of the logical and physical specifications, the representation specifications occur as a
group after the logical defiritions. The representation of the data structures and the address
specifications of the appropriate device registers are given.

task body CR_Handler
- type definitions
type CR_Command is (read, ...);

e P — v s o o e

B a——

type CR_Error is (timing_error, motion_check, hopper_check);
type Int_Status is (disabled, enabled):
type CR_Status is record

error . boolean;
card_done : boolean;
problem :CR_Error;
on_fine : boolean;

busy : boolean;
ready : boolean;
interrupt_status . Int_Status;
command : CR_command;

end record;

type CRB_pointer is access CARD_Buffer:

-- data object declarations
CRS : CR_Status;
CRB : CRB_pointer : = new CARD_buffer ({(1..80) =>""));

- representation specifications for types
for CR_Command use (read => 1. gject => 2);
for CR_Error use (timing_error => 1, motion_check =5 2, hopper_check => 4);
for CR_Status use record

error at0range 0; -- assume msbit
card_done at0range 1;
problem at 0 range 2..4;
on_line at 0 range 5;
busy at 0 range 6;
ready atOrange7; --8notused
interrupt_status atOrange 8; -- 10-13 not used
command at Qg range 14..15;

end record;

fur CR_Status'SIZE use 16:;
for CARD_Buffer use packing;

~address specifications for data objects
forCRSuse at8# 777160 #;
forCRBuse at 84777162 #;

begin -- body of task for handling the card reader
CRS.interrupt_status : = disabled ;. -- status driven handler
loop
while not CRS.on_line or CRS.busy
loep nu!l; endloop:
CRS.command : = read;
while CRS.card_done and CRS.busy
toop nuil; endloop;
it CRS error
then log_error (CRS.problem);
else put (CB, CRB.data);
end if;
end loop;
end CR_Handler,;

/2}'

il

1.3. Interrupts

The status approach. accomplished by constantly polling the device until the desired state is
reached, may not be very useful because of the time spent in a "busy wait”. An interrupt mechanism
enables the handler to respond to changes in device state without busy-waiting.

The task entry mechanism is used to provide the means of specifying interrupt connections and
interrupt enabling and disabling. By representing an entry at a particular location (probably an
interrupt vector location) the system designer connects the entry to the actual interrupt. When an
accept statement is performed on the entry, the interrupt is enabled until the rendezvous actually
takes place: otherwise the interrupt is disabled. This requires the runtime support to put a layer of
abstraction between the Handler and the interrupt mechanism.

We present here only the card read handler. The remainder of the package stands unchanged.

The interface, except fcr the use of interrupts, is identical.

Task CR_Handler is

Entry CR_Int;

for CR_Intuse at 8.# 1004 ;
end CR_Handler;

task body CR_Handler is
begin
loop
CRS.command : = read;
accept CR_int;
if CRS.error
then l0g(CRS.problem);
else put(CB, CRB.data);
end if;
[ahal Al il ofw

endCR_Hand!eri

Notice that the interrupt handler does not interragt with any other process except the hardware
process through the entry (as an interrupt call) mechanism. It does not perform a cail on the entry of
any other process nor coes it accept calls from other processes. Extreme care must be taken to
insure that the handler does not wait unknowingly on another process. especially if that wait degrades
the efficiency of the handler beyond acceptable levels. This wait could easily occur if the handler
calls the process that was suspended to allow the handler tc service the interrupt.

/730

MO, G A D 050 2. i A PRGNS 5y iGN . RO e 22 S ir i o

1.4. Low Level 1/0 Package

Where the device dependant interface is provided by means of priviledged processor instructions,
the system builder must use the implementation dependant interface provided by the low level 170
package. The allowed commands for each device will be specified in the parameters for the
SEND_CONTROL procedure. The device handler instructs the desired device through this procedure.
The status retreivable from the device is defined in the second parameler of the RECEIVE_ CONTROL
procedure. By calling this procedure, the current state of any device may be determined. The actual
code tor the handler is similar to that found in the previous two sections, except that most of the

interface mechanism is exported by the low level 170 package.

We present her only the part of the packége that is relevant to the card reader handler.

package Low_Level IO is
type Device_Classis (....cardreader, ...),
type CARD_Buifer is new strning(t . . 80):
type CR_Command is record
¢ : (read, eject),
d: CARD_Bufter;
end record:
‘ type CR_Error is (timing_error. motion_check, hopper_check),
type CR_Status is record

error : boolean;
‘ card_done : boolean;
problem : CR_Error;
= on_line :boolean;
- busy : boolean;
ready . boolean;
end record,

procedure SEND_CCNTRCL (¢ : Device_Class: ¢ : CR_Command):
procedure RECEIVE_CCNTROL (d : Device_Class: s : CR_Status):

end Low_Level_lO;

The task interface remains the same as above. The entry connrects the handler to the interrupt. The]

body of the task has calls to the low ievel 170 routines instead of the memory references that sufficed

in the previous examples. . Ty

Task CR_Hardler is

Entry CR_in";
private
% for CR_[ntuse at 8 #1007
. end CR_Handler; |

-

task body CR_Hanaler is
1 use Low_Level_IQ;

P

CRS : CR_Status;
CARD : CARD_Bufter;
begin
loop
SEND_CONTROL (cardreader, {read, CARD));
accept CR_Int:
k RECEIVE_CONTROL (cardreader, CRS);
; it CRS.error
F then log(CRS problem);
' else put(CB, CARDY);
end if;
end loop:
end CR_Handler;

1.5. Summary

We have illustrated how a system builder might construct machine dependant software in various
kinds of machine architectures. Not all of the language features that are available to express machine
dependancies have been used in these examples. but the ways in which they might be used are
anclagous to what has been shown.

Particular care must be taken if portability is a major issue. Two types of dependancies must be
reckoned with: hardware and compiler implementation dependancies. These issues cannot be
avoided. but the cesigner can, by suitable abstractions. confine these sections of non-portable code
and, thus, minimize their impact when porting software from one system to another.

In general, the features of Ada enables hardware dependancies to be made visible at the language
level and provides a means of logical treatment that attains all the bencfits of readability and

maintainability that one expects from high level languages.

/32

TUTOGIAL MATERIAL ON THE RTAL DATA-TY2ES ‘N ADA

Final Technical Fegort

by

A Wichmann

Novemper 123C

United States Army
EUROPEAN RESEARC4 OFFICE
London, England

CONTRACT NUMSZIR TAJA37-80-M-0352

National Physical Laberatory
Teddirngton, Middlesex. TW11 OLW, UK

Approved for Public Reiesse, distribution unlimited N

AD

TUTCRIAL MATTRIAL CN THE REAL DATA-TYPES IN ADA

Final Technical Report

by

B8 A Wichmann

November 1980 !

United States Army

EUROPEAN RESEARCH QFFICE
London, England

CONTRACT NUMBER DAJA37-80-M-0342

National Physical Laboratory
Teddington, Middlesex, TW11 OLW, UK

1
Approved for Public Release; distribution unlimited

/13y

/33

—

Abstract. The Ada programming languaZze introduces a
number of novel features in “he area of numerics.
The purcose of ¢this report is to present these
features to 2 prcgrammer wWho is familar with
numerical computaticn but not with Ada. The report
is designed to be presented as a lecture with the
aid of viewgraphs (drafts of these are included).
However, the materjal «can be read in the
convantional fashion.

Comments. The author would apprerciate comments on the
text so tnat any 3subseguent revision can
incorporate improvements.

Acknowledgment, Yr G T Anthony and Miss H M Williams
of NPL have reviewed this report which has
resulted in substantial improvements in its style
and content.

T L AV £ g 8 g~ Nt + B) e om T Y v. St SRR AT e o eldodine oo

NPT

CNTENTS

Tutorial material on the real data-types in Ada 1
1. Fixed and Floating point 1

2. Notation for literals 3

{ 3. A model of approximate computation 5
b, Floating Point Data types 7

5. The predefined floating point operations 13

6. Derivation from the hardware types for floating point 16

7. Fixed point data types 18

8. The predefined fixed point operations 21

9. Literal expressions 24
10. A floating point example, Blue's algorithm 26
11. A fixed point example 28
12. The complex data type - an example of generics 32
13. Portability Issues 33
Referernces 35
Answers to exercises 36

Copies of viewgraphs 39

Tutorial material on the real data-types in Ada

8 A Wichmann, lMational Physical Laboratory

Note: These nctes arz designezd as nmate-ial to be
presented with a set of viewgraphs. The complete
material can be presented in about four hours
assuming only a limited knowledge of Ada
beforehand. The viewgraphs are reproduced at the
end of these notes, and are referenced in thne text
by numbers in tne right hand margin.

1. Fixed and Fleating point

The real data types in Ada zre for approximate computation. The
majority of physical quantities are necessarily approximate
because of the inherent errors involved in their observation. Such
guantities are therefore naturally handled by means of the rea:l
data types in Ada. The purpose of these notes is to explain the
facilities in Ada so that the prozrammer can use <the language
reliably and in a manner appropriate to the job in hand. ,
The real data types in Ada are divided into two classes -~ fixed
point and flcating point. There can be any number cf fixed point
and floating point data types in a program. It is convenient to
have an intuitive view as to what fixed point and floating point
neans. Thinking in decimal, fixed point means-a fixed number of
places before the decimal point and a fixed number after:

+d.dd or +ddd.d or +ddd.
whereas f.oating point means that there are a fixed number of
3ignificant digits and an exponent ("scientific notation" of
calculators):

+d.ddE+dd or +d.dE+d or +d.dddE+dd
where the integer after the E gives the decimal exponent.
The data type thus determines how values are stored since any one
“ype will have the same format. With a fixed point data type with

vhe format

+d.4d

a half 1is stored as +0.50 and one third as +0.33 wnich is, of
course, in error to a small extert., Tne fact that computed values
and even ccnstants cannot be stored exactly is the reason why real

N | PP VY

P T ' T T

t

€ g

data types are said to be apzroximate. Note that with this data
type values of magnitude lass than 0.005 willi be represented as
z2ro (assuming rounding is performed).

Now consider an example of a floa*ting point dazta type with the
format: -

+d.ddE+d
Then

100.0 is stored as +1.00E+2

One might think it could also be stored as +J.10E+3 but this is
not permitted because values are “normalized'. The importance of
normalisation is easy to appreciate when considering storing the
value 101.0 with the same format. This is

+1.01E+2

whereas putting an initial zero would lose the final 1 giving a
one per cent error. Note that floating point values have a roughly
constant relative error whereas fixed point quantities have a
constant maximum absolute error.

In Ada, data types are distinguished by their names, not just
their formats. Hence two data types having identical formats are
distinct. This means that data types should be given names to
reflect the logical properties rather than their formats., If two
sensors read temperature and distance, then they should oe given
distinet data types DEGREES and FEET rather that one type just
because the range of values and accuracy requires an identical
format.

Note that the fixed point data types in Ada have formats which are
not quite the same as those used by ecalculators. With a
calculator, dividing 1.23 by ten gives .123, but with tha format
+d.dd, the division will yield +0.12. To do the division
accurately in Ada, then the result nmust be stored in a type with
the format +.ddd. Clearly, the reduced flexibility of the Ada
fixed point means that it is very easy to 1lose accuracy in
performing computations. Losses also arise with flcating point
ccmputations but they are less markea due to the automatic
normalization., For this reascn, most programmers would prefer to
use floating point, which is of course, wny nocern scientific
ccmputations use this rmode. As a3 rougzh estimate, one should expect
an algorithm to be three times more expensive to pragram in fixed
point. The reason for using fixed point is usuailly the absence of
floating peint on a particular machine or because <h: digitised
siznal input is in fixed point,.

The Aescription given above using cecimal fcrmats is nmerely ¢
illustrate the gereral nature »f Ada <Zat3 types. In fact, A5da

defines the data formats in binary since this is almost universal
for mcdern computers. To give & more accurate description, we
first need some notation from the Ada language.

2. Notation for literals

We are only concerned with numeric literals. These can either
be for integers or real values. Real values are distinguished by
the presence of a decimal point. If a real value is required by a
particular context in the 1language, then an integer is not
permitted. In other words, if the real value one is required 1.0
must be written and 1 will not be sufficient. This means that it
is always easy to see if approximate computation 1is being
performed, even with parameters to a procedure because literal
values will have a decimal point.

Decimal integer values are written in the conventional manner.
Spaces may not appear within the digits of the value, but an
underscore can be used instead. This is very ceonvenient with large
values since the thousands or millions can be separated to aid thre
eye.

Examples: 1 01_234 567
The following are not valid

1 2. 1234
t.arge integer values can conveniently use the exponent notation.
For instance, six million can be written as:

6_000_000 or 6E6 or 6_O00E+3 etc.

An implementation may limit the size of liiterals which can be
nandled, but such limits are likely to be quite large. The line
length also restricts the magnitude of literals.

Real literals can be written in the conventional decimal notation
with a decimal point. An exponent can optionally be used. For
instance, the following all represents the same value:

3.14 0.314E+) 314.0E-2 G3.1_40cC0o

The accuracy with which a literal value is stored in the program
is determined by the context and not by the way in which the
literal value is written in the program. Hence merely writing 20
decimal digits does not imply that the value will be stored with
that accuracy. The accuracy will depend upor the types usea in the
computations containing the literal.

Both integer and real literals can De written using bases other
than ten. “ne reason for tnis Ffacility is +that some machine

properties are specifiea by tue manufacturer in octal or
hexadecimal and hence this notaticn is the lozical one to use in
these contexts. An additional reason for permitting other bases
for real literals will soon ue appareat. Tiae bases whieh Azla
allows are those from 2 to 16, Base 16 uses a notation similar to
that of hexadecimal on the I3M computers ard in consequence A
stands for 16, B for 11, T for 12, D for 13, E for 14 and F for
15. The base is determined by a3 decimal value before a srarp
character which brackets the based number sesguence, Note that the
base and the exponent are written in decimal and in consequence
the A-F characters when used as a digit, can only appear between
the pair of sharp characters. For example:

2#101# means 4 + 1=5 with a base of 2
4#101# means u2 + 1 =17
15#FF# means 15 * 16 + 15 = 255

The nctation can be used both with exponents and with a point for
rea. literals.

e}
Hence 4#1014E2 means 4#107C0+4 = uu + 4 = 258+16 = 272

Writing and reading values in other bases requires care since we
tend to think in decimal. This 1is especially true with real
values.

The syntax of numeric literais is most easily portrayed by means
of syntax diagrams. The arrowed lines are followed according to
the syntax units being analysed. For instance, an integer with
interleaved understores permitted is given by the diagra=z

integer:

C 7)) '

Tre bex for digit can also be given by a diagram with just ten
alternatives for each of thre digits 0 to G. Similarly, one has

sased_integer:

» dizit >
A
3
¢ l
=

p—

(Ci/)

et onute cnt

Y/

Now the syntax diagram for numeric literals can be given using the
- diagrams for integer and based_integer

numeric_litaral:

—>integer
.integerf jLE in:egerfﬁr @
based_integer il E-%
43based_intege§i

Cre further language facility needs to be given because of its
convenience in explaining the language later in this material.
This is number declarations. Both real and integer literal values
can be given an identifier in a number declaration. For instance

PI: constant := 3.14159 26535;
MAX LINE LENGTH: constant : = 96;

Within the Ada program where these identifiers can be usa2d, the
use of the identifier is equivalent to writing the literal value.
Such number declarations can be used to separate out key numerical
values.
Exercises
Write the following based number values in decimal:

16#FF# 4#1.018E2 30,14 8#40.1# 16#0. 84 <:)
What value is 16#0.99999# just a bit less than?

Ahat is wrong with the following literals?

3._14 ug# 0.142 16#FF#E-1 8#0. 9#

3. A model of approximate computation

Ada defines the properties that the 2prroximate computation of
real arithmetic must satisfy. Eecause the real arithmetic is
impiemented on machines with very different underlying hardware,
the definition is permissive. In other words, the properties must
be satisfied, but this can be achieved in a number of different
ways., A particular real data type definition specifies an accuracy
that must be met. An implementaticn is free to provide greater
accuracy than that specified. This is essential because a macnine
can usualily only conveniently implement a small range of different
azcuracies. The problem is to define <he properties so that

amo e e L T
-

different implementations are possibtle and yet make the properties

good enough to meet the demands of the numerical analyst. The
method used is based uper tine werk of W S Brown from Bell
Laboratories on floating point [2). There are differences between
Brown's work and the definition of Ada because of the different
objectives - Brown was interested in providing a model of actual
hardware whereas with Ada a machine independent 1language
definition is required. Ada also handles fixed point.

Ada assumes that the arithmetic facilities are provided using
binary. There are a few additional cvmplexities with fixed point,
so let us start by considering floating point. Floating point
computation involves storing values with a sign, a mantissa and a
signed exponent., The difficulty is that we do not wish to say how
long the mantissa will be, nor the actual range of the exponent
since this will depend upon the particular hardware in use. Hence
we say that the mantissa must be at least so 1long, and the
exponent range must be at least so long.

With a particular mantissa length and exponent range guaranteed,
certain values are capable of being stored exactly. As an example,
assume that the mantissa 1length is 4 Thexadecimal places
(corresponding to 16 binary places). Then

164#0,80004# = 0.5 is stored exactly
as is 1640 .F000# = 15.0/16 = 0.9375
and 16#0.FFFFH#EY = #FFFF.0# = 65535.0

Wwith such a data type, these values are handled exactly 1in the
sense that if one assigns a value to a variable, then one can test
for equality and obtain the expected result. These values are
called model numbers. Equality and inequality of model numbers
have the characteristics of the exact values. However, an
implementation will typically have values which are not model
numbers and almost all the difficulties of real arithmetic are due
to these values. Given one of these additional numbers it is
usually bounded by a model interval. For instance, with the above
data type

164 0.ABCDu# is bounded by
16# 0.ABCD# and 16#0.ABCE#

and 0.1 which is 16#0.1999999...# is therefore bounded by

16#0.1999# and 16#0.199A#

Literal values in an Ada program must be converted by the compiler
to values within these bounds inclusively. Hence these model
intervals perform a vital role in defining the errors that can (:>
arise in a computation. This role is extended to operations as
follows. Given two operands A and B and an operation op, then we
want to bound A op B. Corresponding to A and B, there are model
intervals. The operation is then applied to the two intervals. The

Y3

Yo

Kl

resulting se:t of values is tnen widened, if necessary, to a
further model interval. This model interval bounds the machine
computed value of A op B. This might seem complicated and
indirect, but it has a number of simple consequences., For
instance, the mecdel interval for a model number is just the model
number. Hence if the operands are both mcde. numbers and the
correct, mathematical result is also a mocel number, then the
machine result must be the exact, correct result,

Exactly the same logic of model numters, model intervals and the
calculation of model intervals which bounds the result of an
operation applies to fixed point as well. The difference between
fixed point and floating point 1lies in the model numbers
themselves. There are some additional complexities which arise in
the case when 3 computed result lies outside the range of model
numbers.

Exercises

Given a floating coint tyre which has model numbers with U
hexadecimal places, what is .

(a) the next model number above 1.0?

{b) the next model number below 1.0?

{c) the ratio of ((a) - 1.0)/(1.0 = (9))7?

What rational numbers are not represented exactly in Ada with any
accuracy using floating point?

4, Floating Point Data types

Ada allows the programmer to specify the minimal accuracy of a
real data type. For floating point this specification is an
intezer giving the number of decimal digits of significance in
< »d values. This method of specification is used because of its
+ ong intuitive appeal in spite of the fact that the detailed
3emantics of floating point uses binary.

The number of decimal digits determines the model numbers of the
type. Since a binary radix is used, the floating point model
numbers consist of

sign * binary mantissa * (2.0 ** exponent)

where the mantissa length and the exponent range must be
determined from the number of decimal digits. There is an obvious
relationship between a binary mantissa and the corresponding
decimal one. For D decimal digits one Aaeeds more than
D®*10g(10)/10g(2) binary places to give at least the same accuracy.
Hence Ada defines the mantissa length to be the next integer
greater than D*log(10)/log(2).

@

@

Unfortunately, there is no obvicus natural vaiuve for the exponent
range. In fact, the exponent range i3 independent and logically
should be separately specified bty the programmer., Such a detailed
specification woculd not bLe useful since actual nardware does not
permit an independent choice of both parameters. Also, to be
convenient to the ordinary user, default values are needed for the
range which would again be arbitrary. Some algcrithms dec require 3
reasonable range in relation to the mantissa and from a study of
existing machines, the value has been set of -U*B .. U¥*B where B
is the number of binary places in the mantissa.

Let us now consider an example of a minimal working accuracy of
five decimal digits. This requires at least 5 ¥ 3.32 = 15.6 binary
places. Hence the length of the binary mantissa is tsken as 17
places, The binary exponent range is -68 .. 68. Hence we have

smallest model number greater than zero = 2#0.1#E-68
= 2.0%%#(-69) about 1.69E-21

20 .1111111111 111111 14#E63

largest model number

2.0%#68 -~ 2.0%%51 about 2.95E20

The next model number greater than 1.0
= 2#0.106000C0000000001#%1
= 1.0 + 2.0 *%(-1¢)

Such a floating point type is defined by the declaration
type F is digits 5;

Having declared such a type, it is clearly convenient tc ue able
to access the basic constants associated with it. By this means,
algorithms can be written where the accuracy is isoclated to the
single type declaration. These constants are called attributes of
the type and, in this case, they are predefined by the language

definition.

The predefined attributes are written as the type identifier (F) a
prime (') and then the name of the attribute. The attributes for a
floating point type which are related to the model -umbers are:

F'DIGITS: the value of the expression after "digits'
in the type declaration, and hence 5 in this case,

F'MANTISSA: the ovinary length of the mantissa and
hence 17 in this case,

F'EMAX: the maximum value cf the exponent which is
68 in this case and is always U4#F'MANTISSA

F'SMALL: the smallest gpositive medel nunmber, which
is about 1.649E=21 1n tnis case. I1ts value is

-9 -
LS

always 2.0%%(-F'EMAX-1),

F'LARGZ: the 1largest model number, which is about
2.65E20 in this case. Its wvalue 1is always
2.0WWF 1 EMAX® (1,02, 0%2(-F'MANTISSA)),

F'EPSILON: the absolute value of the difference
between 1.0 and the next model number abeve 1.0.
The value in this case is about 1.52E-5 or in
. general 2,0%#(-F'MANTISSA+1)
dam,
Cf course, because of the relationship between these values, there
is Zittle logical need for them all. In practice, hcwaver, they
are needed for program clarity. F'MANTISSA and F'EMAX give the
basic properties of the model numbers whereas in actual
programming the values F'SMALL, F'LARGE and F'EPSILON are usually
needed.

Consider the problem of determining the errors in a computation, A
literal value such as 0.1 cannot be stored exactly since it has a
recurring binary representation. What is the error involved? In
handling binary values, it is convenient to use hexadecimal
otherwise the based numbers are rather long to write, We have

C.1 = 16#0.19999...4#

With the type F we have 17 binary places and hence the value 0.1
is bounded by the model interval

16#0.19999#..16#0.1999A#

The difference is 16#0.00001# = 16#C. 1#E~U 16.0%%(-5)

F'EPSILON/16

The relative error is thus less than or equal to 9.54 E-6 in this
case.

Ia general, it is easy to s2e that the relative error depends upon
the relationship between the value and the powers of 2. For
instance, a value just greater than one has a relative error of
F'EPSILON (the definition of the value) whereas a value of just
less than 1.0 has half that relative error. In practice, the
actual values of constants are not so important, and in any case
cannot be used for variables and hence the general rule is

lowest possible machine value representing the true value
= (1.0-F'EPSILON)®*true value

highest possible machine value representing the true value
= (1.0+F'EPSILON)*true value

These are the relationships used fcor classical error analysis,
compbined of course, with corresponding reiationships involving the
numerical operations. Note that constants may be converted Dby

- 10 =

rounding implying half the maximum reiative error. This paper does
not aim to teach classical error .2nalysis. The formal proof of the
inequalities of classical error analysis from the Ada model number
definition is given in References [1,2].

Classical error 2analysis is satisfactory provided the values
computed are either zero or lie in the ranges r'SMALL .. F'LARGE
and -F'LARGE .. F'SMALL. Consider the computation of a value
smaller in magnitude than F'SMALL, or.even such a value written in
a program. Then the value in the machine will be in interval
-F'SMALL .. 0.0 or 0.0 ..F'SMALL according to the sign of the
value. This implies ¢that all precision could be 1lost. For
instance, the actusal machine mav only handle model numbers and
round literal values. Hence values greater than 0.0 and less then

F'SMALL/2 will be converted to zeroc. A compiler could warn the

~programmer of such a conversion of a non-zero value to zero, but

there would be 1little reason to do so since the same values
calculated dynamically would lead to zero without warning. Hence
the programmer needs to beware of this condition called underflow,
if an algorithm requires the accurate computation of small values.

As an example of underflow, consider the computation of the length
of the hypotenuse of a right angled triangle:

X := SQRT(A®*2 . Ba#2).

It might seem reasonable that if A or B >z F'SMALL then X »>=
F'SMALL. However, F'SMALL#*2 may underflow to 0.0, giving X=0.0 if
both values are small. Hence 1if the specification of this
calculation requires that non-zero values of A or B giwes a
non-zero value for X, then one must take this into account by
writing (for instance):

SM: constant F := 2, 0%%(-F'EMAX/2); —EMAX is even
-=- calculate A and B
if ABS(A) < SM and ABS(B) < SM then
& 1= A/SM;
8 := B/SM;
X := SQRT(AR®2 , B##D) #* oM.
eisif
-- other case
end if; —~ (*1)

Note that the use of powers of two for scaling reduces the
sotential errcrs to a minimum.

Ada does not require that there are no machine values between 0.0
and F'SMALL. Cn a particular machine, such values could be present
making the cautious code above less necessary. The progrimmer is

(®1) This example is merely an iilustration, se. section ¢
for a realistic example.

/¥

X4

strongly advised to take tne precautions for underflow illustrated
above because the, algorithm will then be portable.

The problem of overflow; that 1is, when computed values or
constants are greater than F'LARGE, is more severe. Clearly, there
must be some limit to values that a machine can handle and beyond
that 'imit it is, in general, unreascnable to replace the true
value by a single value. Ada only requires that values upto
F'LARGE are handled correctly. A machine can, and often does,
provide further values. The implemented range for any Ada scalar
type is F'FIRST .. F'LAST. When the implemented range of values is
exceeded, most machines provide an indication of this fact. In
Ada, this is signalled by means of the NUMERIC EhRROR exception,
for computed values, If a literal value exceeds the implemented
range, then the CONSTRAINT ERROR exception is raised. With
underflow, the computation proceeds in spite of obtaining
potentially meaningless results, but with overfluw an exception
could lead to the termination of the computation. Hence the
specification of a numeric computation should indicate if these
exceptions can arise. The specification of a routine should
indicate which of the f{ollowing three cases hold with respect to
the NUMERIC_ERROR and CONSTRAINT_ERROR exceptions:

(a) The routine has bPeen written so as to avoid
raising the exceptions.

(b) Local handlers have been written for the
exceptions so that these exceptions cannot be
propagated to the caller,

(¢) The exceptions can indeed arise from a call of
the routine (the conditions should be stated).

Consider now the computation
X t= LQRT(A%#2 , pa#p).
but this time considering the question of overflow. The safest

method is to avoid overflow by testing the values of A and B in a
similar method of that used for underflow:

SL: ccnstant F =z 2,0%%(F'EMAX/2-1)
— calculate A and B
if ABRS(A) > SL or ABRS(B) > SL then

A =z A/SL;

B := B/SL;

X t= SQRT(A®%2 , p#¥2) & gi.
elsif

-~ other cases
end if; (*1)

An alternative strategy 1is to write a handler for the
NUMERIC_ERROR exception and only in this case, scale for a large
value. This is not to be recommended in general because it is
machine dependent. The raising of the NUMERIC _ERRCR exception is
not guaranteed and indeed, on machines which allow computation
with values representing infinity., the exception might never be
raised.

A user can declare subtypes of a type (or subtype). Unlike a type,
a subtype is potentially dynamic in its characteristics. Consider

type F is digits 5;
X:F := F(READ_FROM DEVICE);
subtype TF is range 0.0 ..X:

Then the range of values that the subtype TF can have may vary
from one execution of these declarations to another, On the other
hand, the properties of F remain the same since the expression
after "digits' is a static integer expression.

Subtypes of real types have both advantages and disadvantages in
Ada. Obviously, it is useful to place bounds on values and have
these bounds checked by the system as both a documentation aid and
aiso to improve the reliability of the software. Unfortunately,
the checking overhead on every assignment to variables of subtype
TF is not insignificant. The check is necessary since the program
is required to raise the exception CONSTRAINT_ERROR if the range
is violated. The programmer can supgress the checking by means of
a pragma, but this defeats the object of the facility. Hence
subtypes with a real range constraint must be used with care.

Subtypes can also be used tc indicate a need for less accuracy
than that specified by the type definition. For instance:

suctype SF is F digits u4;

or just against an object

(®1) Again, this example is iilustrative only, and section
10 gives a realistic exanmgle.

/y;_.

R ey s

1 Y: F digits 4;

For a subtype, the model numbers are reduced by a corresponding

reduction in the mantissa length, while keeping the exponent range

the same. Hence this would mean a birnary mantissa length of 14

3 places (3 less than F). This means that SF'LARGE is only a very
: small amount less than F'LARGE corresponding to losing three 1's

at the least significant end of the binary mantissa. Note that

SF'SMALL = F'SMALL.

Since compilers must handle objects of a subtype in effectively
the same way as objects of the type, it is unlikely that compilers
can take much advantage of the reduced precision of a subtype.
Hence the advantages of subtypes just giving an accuracy
constraint are minimal. Since there 1is no checking for accuracy
constraints at run-time, there is no run-time penalty.

Exercises

e b ek snma

If F'CIGITS = 2*G'DIGITS, does F'MANTISSA = 2%G'MANTISSA?

wnat is the largest positive value X:F such that X does not
overflow and 1.0/X does not underflow?

5. The predefined floating point operations

For every floating point type, a conventional set of predefined
operations are available as follows:

L b b e P i otk i} st § A e i b+ i

single operand - + no operation
- change sign
two operands » multiplication @ _
{of the same floating point type) / division i
+ addition }
- subtraction i
|
single parameter ABS() absolute value

Each of these operations yields a result which is of the same type
as the operands. The description of the error bounds and the
circumstances under which the exception NUMERIC ERROR can occur
can now be given in detall (see 4.5.8 of manual), by means of the
following steps: '

1. For each operand, a model 1interval of the
appropriate type or subtype is obtained.

2. The mathematical operation is performed on the
- model intervals, obtaining a new interval,

544

3. The interval from the last step is expznded, if
necessary, to a model intervsl.

The nodel interval obtaised from this last step bounds the
accuracy of the operation,

Consider the computation of X/T; X,Y:F and X=75.0 and Y=3.0. Both
X and Y are model numbers (as are all small integers). Hence the
two model intervals obtained from step 1! are just the two single
values. Step two yields the mathematical result 5.0. Now step 3
gives the model interval consisting-of this single value, since

5.0 is also a model number of type F. (ne can clearly see from .
this that computations involving small integer values and giving
smalil integer values are exact. :

Consider now a slightly more realistic example of X*f, X,Y:F and X
= 0D.1and Y = 10.0

Then X is in model interval 16#0.199G69#..16+0.1999A"
and Y is the model number 16#0.A#E1

Step 2 then gives the interval 16#0,.FFFFA#..16#1,.50G0u#
Step 3 then gives the model interval '15#0.FFFF3#..16#1.00014

If the programmer had written 0.1%Y in his program, then J.7 is
converted to the type F by the compiler and hence the same error (::>
analysis applies. Note that the resulting bcunds are approximately
symmetric about the correct result, althougzh some actual machines
may produce results with these bounds but with a bias. 1

Consider another example of X«Y, X,Y:F with X=1.0 and Y=I7'SMALL. :
Then the interval at step 2 is the single vaiue 1.0 + F'SMALL hut

this is widened to the model interval i.C .. 1.0 + F'EPSILON. This

anailysis assumes that F'SMALL < F'EPSILON which is a consequence

of fixing the exponent range in relation tc the mantissa length.

Cne situation has not been detailed. In steps 1 and 3 above, i
may be impossitle to form a model interval because a vaiue exceed
F'LARGE in absolute value. In this case, the interval i3 sai<d to
overflow. When this happens, the NUMERIC ERROR exception may be
raised. It need not be raised because tne machine can handle
larger values adequately or beczuse no indication is given hy the
hardware., Because these different circumstancas cannot De

istinguished, portable software cannot re.y upon the
NUMERIC _ERROR exception,

t
s

One other operation 1is available for rloatirg gsoint wiizsh i3
irregular since the operands are of different tvoes. This is the
exponentiation operator written as **, The lert nand operand is)
any floating point type and the rignt hand operand is any integer
type. The result is of the same type as tie left hand operand. The
operation gives the result of repeatedly multiniying the .aft hand
operand by itself for a positive exzonent. The numoer of

75¢

-~ 15 -

multiplications being one 1less than the value of the right
operand. A negative exponent gives the inverse of the positive
expoent value, Hence:

X ®#83 is equivalent to X * X

X #8(.2) " 1.0/(X%*X)
X &3 " X

X 8 " 1.0

Hence the semantics of this operation are defined in terms of the
multiplications involved. The compiler can reduce the number of
multiplications hy calculating X**4 as (X2X)®(X®*X) rather than
(X®X)#*X)#X. This gives a faster computation for large values of
the exponent but does not give (in general) more accuracy.

The remaining operations on floating point operands are more
regular than #*% but give a BOOLEAN result. These are the
relational operators. All six relational operators are available
although they must be used with caution, as we shall see.

In comparing two values, everything is straightforward if the two
values are not approximately equal and both are in range (ie
between - F'LARGE and F'LARGE). However, if the two values are
nearly equal, one has a potential problem, Under such
circumstances, the result will depend upon the actual accuracy of
the hardware. The precise formulation of this again depends upon
the use of model intervals as follows:

Firstly, the appropriate model intervals are constructed for each
operand as in the case of the other operations. Then one of five
cases determines the result:

(a) The intervals are disjoint: the mathematical result
is obtaired

(b) Each interval is the same single model number: the
mathematical result is obtained

(e) The two intervals intersect in a single model number:
either the exact result is obtained or that of comparing
one operand with itself

(d} The intervals have more than one number in common: the
result is implementation dependent.

(e) One of the two intervals overflows: the result is again
implementation dependent, but the NUMERIC_ ERROR exception
can be raised (although it need not).

.

These cases are easily illustrated by means of a table with type F
of five digits again.

X op Y ' case result

0.1 10.1 (a) mathematical result
F '*SMALL F'SMALL (b) mathematical result
0.1 0.1+F'EPSILON/8 (¢) (Intersect at 16#0.1999A#)

mathematical result or
0.1 op 0.1 (=Y op Y)

0.1 0.1+F'SMALL (d) implementation defined
F'LARGE ~F'LARGE+1.0 (e) implementation defined or
NUMERIC_ERROR
0.1 0.1 ' (d) implementation defined (*1)]
Exercises

with A, B, C:FLOAT: @
Does

(A+B) «C=A+ (B+C)?

A +B=8B4+ A?

What is wrong with the following?
A+ 12
24%B
CR%2_ 07?

6. Derivation from the hardware types for floating point

As explained so far, it would appear that an implementation would
have to provide a large number of distinet types for digits N,
N=1..30 (say). However, as is well known, machines typically have
only one or two hardware types. We would appear to have a problem.
However, as defined, an accuracy of N digits can be implemented
with a hardware type having N or more digits of accuracy. Hence,
given a machine with two hardware types of 10 and 20 digits
. accuracy, all the types of accuracy <= 10 would be handled with 10
digits, and the ones with more than 10 and less than or equal to

(*1) It might seem odd that 0.1:0.1 is not necessarily true.

The reason is that many machines perform caleculations with

more accuracy than results can be stored in main memory.

”% This is the so-called overlength accumulator, Hence 1.0/10.0

E would give more accuracy than 0.1 stored in main memory,
giving the unexpected false to 1.0/10.0 = 0.1.

/J‘;L

- 17 -

20 digits with 20 digits of accuracy. The vital fact which permits
this is that the model numbers for accuracy of digits N are model
numbers for all larger accuracies.

The hardware types have conventional names, namely SHORT FLOAT,
FLOAT and LONG_FLOAT. Of course, if there are only two hardware
types, the names actually in wuse will depend upon the
implementation. A valid Ada system could have no such types if the
target hardware provides no approximate facilities. Assuming that
floating point is provided, then type FLOAT should be available.
Hence, if one is not concerned with control of accuracy for small
amounts of code, then one can just use the type FLOAT. Direct use
of the hardware types is not to be recommended since it is clearly
machine dependent. However, if it is necessary to implement basic
software effectively to augment the hardware, then such machine
dependence 1is needed., Note that the attributes of FLOAT
(SHORT_FLOAT and LONG_FLOAT) characterise the machine.

Given
type F is digits D;

such that F is implemented by the hardware type FLOAT, we say that
F is derived from FLOAT which is written in full as

type F is new FLOAT digits D;

The full form is not appropriate in most cases, since on another
system F could be implemented by SHORT FLOAT. Hence the short form
of declaration is to be preferred to increase portability. Even
with the long form, F'DIGITS = D and this is not necessarily equal
to FLOAT'DIGITS. Given either form of declaration, it is
occasionally necessary to access the characteristics of the
implemented type. This can be done by means of the notation

F'B+SE'DIGITS meaning FLOAT'DIGITS etc.

The advantage of the 'BASE notation is that it is possible to
exploit the additional fortuitous accuracy provided by the

implementation. Consider for instance the summing of a series T(I)
until convergence is obtained:

SUM := 0.0;

while ABS{T(I)) > F'EPSILON * SUM loop
SUM := SUM « T(I);
I :=1 + 1

end IOOD:

As written it will stop summation appropriate to the declared
properties of F. However, on a particular machine more accuracy
mizht be obtained by writing F'BASE'EPSILON -~ going further than
that would be pointless. Of course, a numerical analyst would sum
such a series from the smallest term upwards, but the principle

remains the same.

Exercises

What is the relationship between F'DIGITS and F'BASE'DIGITS?
What is the relationship between F'LARGE and F'BASE'LARGE?

If F'DIGITS = G'DIGITS does F'BASE'DIGITS = G'BASE'DIGITS?

7. Fixed point data types

With fixed point data types, the user specifies the maximum
acceptable absolute error bound. It is also necessary to specify
the total range of values that must be covered, since the range
and the error bound are required to determine the representation
of values. A fixed point data type has the form:

type FX is delta D range L .. U;

where the D, L and U are static real expressions. All three values
can be accessed as attributes of the fixed point type:

FX'DELTA, the absolute error bound,
FX'FIRST, smallest value of the type,

D
L
U = FX'LAST, the largest value of the type.

The type definition, together with a possible representation
specification determines the set of model numbers of the type. The
model numbers of the type are integer multiples of a value called
the actual delta, which is an attribute of the type
(=FX'ACTUAL_DELTA). This value is smaller than or equal to
FX'DELTA so that values can be represented to within the accuracy
specified. The range of integer values for the model numbers must
be sufficient to be within FX'DELTA of both L and U. In an
analogous way to the mantissa for floating point, the integer
muitiple (including the sign) is assumed to have a total range of
-2##N41,. ., 2%8N-1 for some N. Hence to summarise, the model numbers
are: :

sign ® multiple * FX'ACTUAL DELTA
where 0 <z multiple <z 2 #®* N -~ 1 (for some N).

There are some essential differences here between fixed point and
floating point. In floating point, some values such as 1.0 are
always model numbers., This is not the case with fixed point. The
value 1,0 could be less than FX'ACTUAL_DELTA and in consequence
represented as 0.0. Conversely, 1.0 could exceed the range of
values of the type and hence use of such a value could raise
CONSTRAINT ERROR. In general, unless a representation
specification has been given which explicitly states the value of

1

A

- ——

- 19 =

ACTUAL _DELTA, the model numbers are unknown. Hence one cannot
assume that certain values, such as powers of two which are in
range, will be represented exactly.

Let us now consider a practical example. The need is to process
data which has an observational error of .01 and a range of 0.0

to 100.0. To ensure the ability to hold negative values, the type
definition could be

type F is delta 0.01 range -100.0 .. 100.0:

A typical implementation could then choose a power of two for the
ACTUAL DELTA. This could be 1.0/128 or a smaller power, depending
upon the word length of the machine. In this case, assume that
F'ACTUAL DELTA = 1.0/128. Then the model numbers are multiples of
tnis value to a limit which must be at least within the range
-10C.0 + 2,01 .. 100.0 ~ 0.01. Since the multiples are a power of
two, the model numbers are:

M ® 1.0/128 where -2%%14 < M < 2%%14,

Hence the largest model number is 128,0 - 1.0/128. This model
numpoer is outside the range of the type and in consequence cannot
be assigned to values of type F.

Ordinarily, the ACTUAL_DELTA value is choosen by the compiler, the
only constraint being that it must be less than or equal to the
delta for the type, In a respresentation specification, the user
may specify the ACTUAL DELTA value. By such a specification, the
representation of values can be constrained to conform to external
requirements. For instance, if an analogue to digital converter
from a camera places values in the memory of the computer, it 1is
important that the Ada program should use the same representation.
Consider the case when values 0 to 127 are input in binary, but
these are regarded as fractions of unit intensity from 0.0 to
127.0/128. Then one might have:

type INTENSITY is delta 1.0/128 range 0.0 .. 127.0/128;
for INTENSITY'ACTUAL DELTA use INTENSITY'DELTA;
for INTENSITY'SIZE use 7; .

Note that -1.0/123 is a model number of the type but that {t
cannot be stored in values because of the range constraint and in
consequence, the sign is not needed in the representation.

As a further example of a representation specification, consider
handling a type analogous to DURATION in Ada ie, timing intervals.
The obvious representation 1is in clock ticks so that the
ACTUAL DELTA value might be 1.0/60C seconds. The programmer would
wish to work in seconds to avoid changing the program to work in
Europe (with 50 cycle mains supply). Hence one might have:

@

-20 -

type DURATION is delta 1.0/60 range -24.0 .. 24.0;
for DURATION'ACTUAL_DELTA use DURATION'DELTA;

The special attributes of a fixed point types are as follows:

F'DELTA: A real literal value equal to the value of
the expression after the ‘'delta'., In this case the
value 1is 0.01.

F'ACTUAL_DELTA: The real literal value used by the
implementation as the constant for the multiples
which give the model numbers. In this case the
value is 1.0/128 = 0.0078125.

F'BITS: This is the number of bits needed to
represent the unsigned model numbers. In this
case, 7 bits is required before the point and 7
bits after making 14 in all, ie F'BITSz14. The
value is that of the integer literals (see section
9).

F'LARGE: The largest model number of the type F. In
this case the value is 128.0 - 1.0/128 =
127.992175. The value has the same type as that of
real literals. In general, one has
F'LARGE = (2##F'BITS - 1) * F'ACTUAL_DELTA.

Subtypes of fixed point types can be declared explicitly or
implicitly by giving an accuracy constraint on the declaration of
a variable. In an exactly analogous way to floating point, there
is no run-time check for an accuracy constraint for fixed point.
Consider:

subtype SF is F delta 0.02;

Note that the range constraint is not needed since the range of
values is determined from the type definition (-100.0 .. 100.0 in
this case). This subtype definition means that the set of model
numbers is correspondingly reduced by the value SF'ACTUAL_DELTA
being a binary power multiple of F'ACTUAL DELTA. In this case,
with F'ACTUAL DELTA = 1.0/128, SF'ACTUAL DELTA could be 1.0/64.
The implementation need not reduce the model numbers for a
subtype, For this reason, it is not permitted to set the
ACTUAL_DELTA for a subtype in a representation specification.
Hence the only action required by the compiler for the above
subtype declaration is to check that the expression after delta
has a value greater than or equal to F'DELTA. If an implementation
does reduce the model numbers for a subtype, then the values
SF'BITS and SF'LARGE reflect the value of SF'ACTUAL_DELTA.

Exercises

Given: type FX is delta D range L .. U:

(a) Are D, L and U model numbers? (::)
(b) Can the range constraint be omitted?

(¢) If L <1.0< U, is 1.0 a model number?

What is wrong with the following?

(d) type FD is delta 0.01 range 0.0 .. SQRT(2.0):

(e} type FE is delta 0.01 range ¢ .. 10;

(f) type FF is delta 10.0 range 0.0 .. 100%FF'DELTA:

8. The predefined fixed point operations

With floating point, the specification of each operation was
easy since with the exception of ##% the type of the operands and
the result was the same. It is easy to see that in general this is
not possible with fixed point. The rescaling of intermediate
results is done by explicit type conversion. This rescaling is
only essential on multiplication and division since the magnitude
of values only changes significantly with these operations.

The operations which do not involve rescaling are tabulated below.
Here X is of any fixed point type and I of any integer type, the
result always being the same as X.

Example meaning

+ X no operation <::>
- X change sign
addition
subtraction
equivalent to repeated addition
equivalent to repeated addition
) absolute value
division without rescaling

+

X;NHXX

N s w |
~~

[l o I

Now consider some examples of the calculation of error bounds for
computation using the same example type F as above:

type F is delta 0.01 range -100.0 .. 100.0;
Given

CNE ¢ F :2 1.0;
then it is not safe to assume that ONE is represented exactly

-22 -

unless it is known that F'ACTUAL_DELTA is a submultiple of 1.0. An
implementation is free to truncate or round a constant on
conversion to F, and in consequence all one can say is that
ABS(ONE-1.0) <= F'DELTA. To simplfy the remaining discussion,
assume that F'ACTUAL_DELTA is 1.0/128, Then, of course, 1.0 is a
model number and therefore is stored exactly. Now consider
TENTH : F := 0.1

Here the value is bounded by the model interval 12.0/128 ..
13.0/128, and could be either of the two extremes or a value in
between. Now consider the expression 10®*TENTH. This is equivalent
to repeated addition and in consequence can yield any value in the
interval 120.0/128 .. 130.0/128. Of course, on a binary machine,
the expression will never yield 1.0 exactly since 0.1 has a
recurring binary representation.

The fixed point operations follow the same logic as for floating
point as far as the definition of error bounds is concerned. In
consequence, all of the operations above except, possibly,
division by an integer, will yield exact results for multiples of
F'ACTUAL_DELTA assumming the result is in range. Since in some
cases, the implementation will not have values between model
numbers, this implies that all these operations are exact. In
fact, values between model numbers can only arise from division by
an integer, from constant, and type conversions from other types.
The nature of the inexact operation can be illustrated from
X: F := 10.1;
Y: F 1= X/2;

The X value is bounded by the interval 1292.0/128 .. 1293.0/128.
The Y value 1is then bounded by the interval 646.0/128 ..
647.0/128. Hence multiplication of Y by 2 will yield a larger
bounding interval than that of X. If, of course, one knew that X
was equal to an even multiple of F'ACTUAL DELTA, then Y := X/2;
and s= Y®2: would leave X unchanged. (*1) The model numbers for
an integer type in fixed point operations are just the integers
themselves.

The rescaling operations are general fixed point multiplication
and division. The operands are of any, possibly distinct, fixed
point types. Consider the types:

type F is delta 0.01 range -100.0 .., 100.0;
type G is delta 1.0 range -10_000.0 .. 10_000.0;

Given F1,F2:F, consider the product F1 ®* F2, This product is very
likely to overflow the range of F and hence in general it cannot
e considered to be of type F. Using the intuitive concept of
formats, it is quite clear that a product has a different format.

(*1) 1If the statements Y:=X/2: X:zY®2; appeared in a
program, compiler optimization could give the exact result
in 81l cases (since CONSTRAINT ERROR cannot arise,
optimization is safe),

-23 -

On the other hand, given G1:G, it is clear that one should be able i

to assign the product to G1 without overflow. In Ada, the product

is regarded as \Universal Fixed - a hypothetical type of

arbitrarily high accuracy. This type does not have an Ada name so

that no variables can be declared of this type. All that can be

done with such a product is to convert it into another type. In

this case, one can write: (::)
G1 := G(F1 #® F2);

To calculate error bounds, the operation is regarded as a whole:

ie calculating the product and the conversion. Assuming that

F'ACTUAL_DELTA = 1.0/128 and G'ACTUAL DELTA = 1.0, then one has:

F1 1.0 10.0 10.1
F2 2.0 0.1 10.1

bounds on F1i
1.0..1.0 10.0..10.0 1292.0/128..1293.0/128

tounds on F2
2.0..2.0 12.0/128..13.0/7128 1292.0/128..1293.0/128

bounds on F1%F2
2.0..2.0 120.0/128..130.0/128 101.88 .. 102.04

P

bounds on G1
-; ' 2.0..2.0 0.0 .. 2.0 101.0 .. 103.0

In this case, the error bounds are about 2 units in the resulting
type. Clearly, if the operands have high accuracy as well as the
resulting type for the product, then no accuracy need be lost.

e e ¢ e S s

Fixed point division works in the same way with the requirement to
convert to result of the operation. Naturally, if the right hand
operand has a small value, then substantial inaccuracies can
occur. ’

Exercises

(a) Given a fixed point type with a range of positive values only,
. can the function ABS have any use?

(b) Should an implementation 1limit the smallness of the delta
value?

(¢) What purpose does the 'DELTA value serve if errors are bounded
by multiples of 'ACTUAL_DELTA?

(d) Given type FD is delta N.0% range =1.0 .. 1.0; and assuming
FD'ACTUAL_DELTA = 1.0/'28, and ¥ = 0.7, calculate the error bounds

X2

on:

Y 2 0.6 + FD(0.2%X) + FD(0.1*FD(X*X)); -
and on
Y := FD((FD(0,1%X) + 0.2)%X) + 0.6;
G. Literal expressions ’ $

In the preceeding sections one problem has been avoided,
namely, the type of a numeric literal. It has been noted tnat
literals are implicitly converted to the type required by the
context. This implicit conversion can lose accuracy and can also
raise the exception CONSTRAINT ERROR if the value exceeds the
implemented range of the type. <::>

Integer literals are regarded as being of type Universal Integer
and real literals of type Universal Real. The names of these types
are not available as Ada names and in consequence, cannot be used
to declare variables etc. However, it often iLappens, especially
with fixed point working, that there are relationships between
literal values which cannot be easily expressed be means of typed
expressions. Ada therfore allows for the evaluation (by the
compiler) of literal expressions. Hence, wherever Ada permits an
integer expression 1+1 (say), can be written. Each literal 1 is of
type Universal Integer and the "+" is evaluated by the compiler
independently of the context. Consider the following:

type INT is range -10 .. 10;
JEN: constant INT := 10;
THOUSAND: constant := 1000;

I : INT; 1
I := TEN; — OK

I := 1000 * TEN; — (N]
I := THOUSAND - THOUSAND; -~ (2) OK I :=z O:

I := THOUSAND = 1000; =~ (3)

converted to INT, the INT "#*" operation is applied, the result is
checked for range, and lastly the assignment is performed. In this
case, the first step fails as 1000 is not within the range of the
type, and hence CONSTRAINT ERROR is raised,.

In case (1), the actions are as follows: 1000 is implicitly i

In cases (2) and (3), the result is to assign zero %o I since the
subtraction is that of Universal Integer which is performed by the
compiler (within an unbounded range).

Similar remarks apply to real literal expressions:

type F {s digits 5;
RATIO: constant F := 3. 14;

_—

- 25 =

PI: constant := 3,14159_2€%535;
F1 : F;

F1 := 2.0 * PI; ~- Universal Real multiplication
F1 := 2.0 ® RATIO; -- Multiplication of type F

F1 := 1,0E200 - 10.0 ® 1.CE159;
-— Literal expression value 0.0
-- no overfliow possible

| Of course, with both Universzal Integer and Universal Real, a
‘ compiler will have some limitation in the size of values and
accuracy respectively. These limits should not be of any practical
significance and in ccnsequence will be larger than any
implemented type availahle on typical target machines,

The type Universal Real is not strictly a floating point or fixed
point type but has the functionality of both. In consequence, all
the following operations are legal as illustrated by the number
declarations:

ADD: constant :z 1
SUB: constant := 6.
PLUS: constant :z +12.0
NEG: constant := - :
MULT1: constant :-
MULT2: constant :=
MULT3: constant :=
DIV1: constant :
DIV2: constant :

EXP: constant :=z 3.0 #% 2.
ABS1: constant := ABS(6.0);

The relaticnal oferators are also available for Universal Real
giving the BOOLEAN result as wusual. The semantics of these
operations is the same as that for the typed operations except
that the mocdel intervals are smailer than any implemented real

type. Intuitively, one can envisage a compiler storing values in a
floating point type of high accuracy.

Exercises

Are the following literal expressions?

(a) F'DIGITS + 1C <::)

{(b) FX'DELTA / '0.0
(e) FX'LAST ~ 9.1
(d) 1/FX'ACTUAL_DELTA

i e e

I Iiocri o o S s s L e o - M e - e e - B - .o 1

- 20 =

10. A floating point example, Blue's algorithm

Blue's algoritim [5] is for the calculation of the Euclidean
norm of a vector (ie square root of the sum of the squares of the

elements). It is a natural extension of the calculation of (:ED

SQRT(A®®2,B#*%2) ywhich was used above. The algorithm is very
carefully written to avoid overflow and underflow and also to
guarantee the precision of the result. Hence it is a good example
of a high-quality algorithm (orginally written in FORTRAN). The

paper itself should be studied for the numerical analysis
involved.

The paper presents the algorithm in two forms: a mathematical
formulation using Greek letters and conventional notation; and a
formulation in RATFOR, a FORTRAN preprocessor. The major
differences between the RATFOR version and that for Ada below are
that the Ada version works for any implemented precision and does
not depend on an additional subroutine to set critial constants.
In Ada, these constants are model numbers and hence the definition
of the language guarantees that the values are set correctly from
the predefined attributes.

The identifiers used are those of the RATFOR implementation, but
in upper case. In practice, longer identifiers that show the
relationship to the mathematical formulation of the algorithm
would be preferable,

The function itself, called NORM must assume an appropriate
context for the types of its parameters and for the SQRT routine.
This context is:

type REAL is digits D;
type VECTOR is array (INTEGER) of REAL;
function SQRT(X: REAL) return REAL;

The body of the function can now be given. The main logic is to go
once through the vector accumulating three sums according to the
magnitude of <each element. The three sums are then scaled as
appropriate to give the final answer.

function NORM(X: VECTOR) return REAL is

- calculate constants which depend upon REAL.

-= Floor and ceiling functions of the paper avoided

- by using the truncation of integer division.

EB1: constant := (REAL'EMAX + 1)/2; — -(exponent of B1)
B1 : constant REAL := 2.0 ®*#(_.EB1); — model number of REAL

EB2: constant := (REAL'EMAX - REAL'MANTISSA + 1)/2;
B2 : constant REAL := 2.0 #% EB2;

ESIM: constant := REAL'EMAX/2 + 1:

- 27 -

SIM : constant REAL := 2.0 #% ES1M;

ES2M: constant := (REAL'EMAX + REAL'MANTISSA + 1)/2;
S2M : constant REAL := 2.0 ** (-ES2M);
OVERFL: constant REAL :=z REAL'LARGE * S2M;
-- this value can be calculated bv the compiler

RELERR: constant REAL := SQRT(REAL(REAL'EPSILON));
-- Conversion necessary as 'EPSILON is a literal.
-- Note that this value must be calculated dynamically.

ABIG, AMED, ASML: REAL := 0.0:; = the three accumulators

AX: REAL:
N: constant INTEGER := X'LENGTH;
begin

-- size of array = 0 is not sgpecial case in Ada (unlike FORTRAN)
if N > 2%RRTAL'MANTISSA then
raise CONSTRAINT_ERROR; -- not clear hcw to handle this case
end if;
for J in X'FIRST .. X'LAST loop
AX := ABS{X(J));
if AX > B2 then
ABIG := ABIG + (AX * S2M)##2.
elsif AX < B1 then
ASML := ASML + (AX ® SiM)#s#2.
else
AMED := AMED + AX®#2.
end if;
end loop;
if ABIG > 0.0 then
ABIG := SQRT(ABIG);
if ABIG > OVERFL then
return REAL'LARGE; ~- can't raise NUMERIC_ERROR as well as
~= returning a result
end if;
if AMED > 0.C then
ABIG :=z ABIG / S2M;

AMED := SQRT(AMED);
else

return ABIG/S2M;
end if;

elsif ASML > 0.0 then
if AMED > 0.0 then
ABIG := SQRT(AMED);
AMED := SQRT(ASML)/S1M;
else
return SQRT(ASML)/S1M;
end if;,

1

e.3e

return SQRT{AMET); -~ tne standard path
end if;
if ABIG > AMED tren

ASML := AMED:

else
ASML := ABIG;
ABIG := AMED;
end if;

if ASML <=z ABIG * RELERR then
return ABIG:
else
return ABIG ¥* SQRT(1.0 + (ASML/ABIG)®*%2); (:)
end if;
end NORM; — (%*1)

The algorithm is not completely satisfactory in the sense that
although it will work for any real type, the algorithm uses only
the Ada properties of the type. By replacing each occurance of
'"REAL by REAL'BASE, the algorithm would use the properties of the
implemented type. With such a replacement, there would only be one
effective version of the function for each of the hardware types.
Further ‘'improvements' can be made by exploiting specific
machine-dependent properties of the type (see section 13).

11. A fixed point example

A common requirement in fixed point is to mimic floating point
to conserve either time or space. The evaluation of a polynomial
is sometimes used to approximate a function. Such polynomials are
typically truncated power series which rely upon the decreasing
contributions from the higher order terms. Given:

Y := A + BEX o+ CRYR#Q , DHY¥R3.
the most effective evaluation method is nested multiplication, ie
Y := ((D®X + C)*X + B)®*X + A;
As X is small, with floating point, the normalization on the
addition of A is the only source of rounding error. With fixed
point using a pure fraction as the data type, each partial product
can be calculated with minimal errors so that the resulting error
is again minimised. Note that performing the calculation in
polynomial fashion both involves more operations and is, in
general, less accurate.

To 1illustrate the use of fixed point for approximation, the
calculation of the sine and cosine functions is given from Cody
and Waite [6]. It is assumed that floating point is expensive on
the target machine and therefore the major computation uses fixed
point. The algorithm {llustrates a number of other features
including type conversion, literal expressions, integer type
definitions and conditional compilation. The algorithms given in
(6] include a number of options which would ordinarily be chosen
by the implementor. Some of the choices in this case are inserted
into the algorithm so that the compiler selects the necessary
code,

{®"1) Not yet tested with an Ada compiler

T e ‘

/",I

o

b

In order to correspond to conventional usage, the routines SIN and
COS are coded for the type FLOAT. No assumptions are made about
the type except that integer and fixed point types are available
with sizes about the same as the mantissa length of the type
FLOAT.

The argument reduction is a difficult aspect of sine and cosine.
The constants C1 and C2 (whose sum is PI) are used for this in the
way recommended for a machine without guard digits on floating
point. The code 1illustrates that compiler "optimization" of
floating point can be very unsafe,

package SIN COS is
function SIN(X: FLOAT) return FLOAT;
function COS(X: FLOAT) return FLOAT;
end SIN_COS;

package body SIN COS is
PI: constant := 3.14159 _26535_89793_23846;
PI_DIV 2: constant := PI/2;
ONE DIV PI: constant := 1.0/PI;
SGN_POS: BOOLEAN;
Y: FLOAT;

procedure COMMON PART(X: FLOAT);

function SIN(X: FLOAT) return FLOAT is
begin
if X < 0.0 then
SGN POS := FALSE;
Y := - X;
else
SGN_POS := TRUE;
= X
end if:
COMMON_PART(X);
return Y;
end SIN;

function COS(X: FLOAT) return FLOAT is
begin
SGN_POS := TRUE;
Y := ABS(X) + PI_DIV 2;
COMMON_PART(X):
return Y;
end COS;

procedure COMMON _PART(X: FLOAT) is
B: constant := FLOAT'MANTISSA:

type INT is range O .. U % 2#%(B/2);
YMAX: constant INT := INT(PI®2%%(B/2)+0.5):

N: INT;

X1, X2, XN, F: FLOAT:
C1: constant FLOAT := 8#3.1104#;

C2: constant FLOAT := -B8,9089_10206_76153 73566_17E-6;
EPS: constant := 2.0 ®* (B/2);

D: constant := 2.0 ** (< B);

type FR is delta D range -1.0 «+ D .. 1.0 - D3
G: FR;

begin
if Y >z FLOAT(YMAX) then

raise CONSTRAINT ERROR;
else

N := INT(Y ® ONE DIV PI);

XN :z FLOAT(N);

if Nmod 2 = 1 then

SGN_POS := not SGN_POS;

end if;
if ABS(X) /= Y then

XN := XN - 0.5; == COS wanted
end if;

X1 $= FLOAT(INT(ABS(X)));
X2 := ABS(X) - X1;
F 1= ((X1 = XN®C1) + X2) - XN¥C2; (::)
1f ABS(F) < EPS then
Y := F;
el se
G := FR(F/2.0);
G := FR(G * G);

if B <= 24 then
Y := FLOAT(
FR((
FR((
FR((
FR(0.00066_60872 * G)
- 0.01267_67480) * G) <::>
+ 0.13332_8u4022) * G)

-~ 0.66666_62674) * G)
3s
elsif B <= 32 then
Y := FLOAT(
FR((
FR((
FR((
FR((
FR(~0.00002_uk4411_867 * G)
+ 0.00070_u6136_593) * G)
- 0.01269_81330_068) * G)
+ 0.13333_32915_289) * G)
- 0.66666_66643_530) * G)
)i

- 31 -

elsif B <= 50 then
Y := FLCAT(
FR((
FR((
FR((
FR((
FR((
FR((
FR(-0.00120_76093_! 891E-5 * G)
+ 0.06573_ 19716 142E-5) * G) f
- 0.00002 56531 1578“ 674) * G)
+ 0.00Q070 5&673 00385 092) * G)
- 0.01269_ 84126 86862 4o4) * G)
+ 0.13333 33333_32414 742) * G)
- 0.66666_ 66666 666?8 613) * G)
\.
elsif B <= 60 then
Y := FLOAT(
FR((
FR((
FR((
FR((
FR((
FR((
FR((
! FR(0.00001_78289 _31802E-5 *G)
. ~ 0.00125__ 22156 53481E-5) * G)
: + 0.06577 7"038 64562E-5) * G)
- 0.00002 56533 57361 _43317) * G)
+ 0.00070 5&673 71779 91056) *)
- 0.01269_ 84126 98369 17789) * G)
+ 0.13333_ 33333 33330 64050) * G)
' - 0.66666_ 66666 66666 60209) ®G)
s

else
raise CONSTRAINT_ERROR;

end if;

if not SGN_POS then r
Y := =Y,

end if:

end COMMON_PART;

end SIN COS; -- (*1)

(*1) Not yet tested with an Ada comoiler

- 32 -

12. The complex data type - an example of generics

An essential difficulty with both fixed point and floating
point subroutines is that they can only be used with one type - 4
and in consequence one accuracy. Usually, the text of a subroutine
will be more general than this although when it is compiled, it
will be for a specific accuracy. The full generality of the source
text can be exploited by means of generics. The numeric types are
made generic parameters so that specific instantiations give any
specific accuracy (supported by the implementaticn).

As an example of generics, the package for providing complex data
tyces is used, This is very similar to the rational number package
given 1in the language reference manual (which does not use
generics),

generic
type REAL is digits <>; ~- matches any floating point type
package COMPLEX OPS is
type COMPLEX i3 record
RE, IM: REAL;
end record;
function "-" (X: COMPLEX) return COMPLEX;
function ABS(X: COMPLEX) return REAL;
function "+" (X, Y: COMPLEX) return COMPLEX;
function "-" (X, Y: COMPLEX) return COMPLEX:
function "#" (¥, Y: COMPLEX) return COMPLEYX:
function "/" (X, Y: COMPLEX) return COMPLEX:
end COMPLEX OPS;

Trhe package body does not repeat the generic parameters, and could
be:

with MATH LIB;
package body CCMPLEX_OPS is

function "-" (X: CCMPLEX) return CCMPLEX is
begin
return { - X.RE, - X.IM);
end "__" ;

function AB3(X: COMPLEX) return RTAL is
A, B: REAL;

begin
if ABS(X.RE) > ABS(X.IM) then
‘ A := ABS(X.RE);
" 5 1= ABS(X.IM):
TR else
: A =z ABS(X.IM):
' B :=z ABS(X.RE):
end if:

if A > 0.0 then

- 33 -

return A ¥ MATH LIB.SQRT(1.0 + (B/A)*%2);
else
return 0.0;
end if;
end ABS;
function "+" (X, Y: COMPLEX) return COMPLEX 18
begin
return (X.RE + Y.RE, X.IM « Y.IM);
end n*n:

function "=" (X, Y: COMPLEX) return COMPLEX is

begin
return (X.RE - Y.RE, X.IM =« Y,.IM);
3 end "-";

function "¥*" (X, Y: COMPLEX) return COMPLEX is

begin

return (X.RE®Y RE - . IM%Y_ (M,
X.IM®Y RE + {.RE™Y.IM)

end uQn:

function "/" (X, Y: COMPLEX) return COMPLEX is
A: REAL := Y.RE®®2 o+ v TM##D.
begin
return ((X.RE™Y.RE + X.IMRY,IM) / A,
(X.IM®Y.RF - X.RE®*Y_,IM) / A);
end ll/" :

end COMPLEX OPS; - (%*1}

13. Portability Issues

The Ada language does not aim at complete portability. To do so
would mean that it would be impossible to write machine-specific
code such as that illustrated in section 11, Also, the differences
in actual hardware does not make portability achievable at
acceptable costs. Ultimately, 'he floating point addition of a
machine is defined by the microcode, which cannot even be
characterized by a few simple parametlers. ilence programmers need
to be aware of potential portability problems so that code is ncot
needlessly machine-specific.

Integer Types. @
New types should be introduced (or reasona of abstraction and
modularization. It 1is particularly important to introduce new
integer types in handling large ranges (> 16 bits) =since these
may not be supported, nr will have =aome 2ignificant penalty. If a
large integer type 1is only used in one small routine, then
recoding {s much simpler than if INTEGFR {s used thoughout (and

(*#1) Not yet tested with an Ada ~ompiler

161

cnly during execution it is found that one vroutine assumes
INTEGER'LAST > 2##16).

A trap for the wunwary is that intermediate results in an

expression of type T can exceed the range T'FIRST..T'LAST. In

consequence, portability is not assured since on other hardware T f

may correspond exactly to the range of a hardware type. Diagnostic

compilers can trap this ccndition and cause NUMERIC_ERROR to be
] raised at run-time. Of course, the values for which NUMERIC ERROR
is raised is again dependent upon the hardware. On some machines,
calculations are done to 32 bits but stored values are 16 bits
giving the overlength accumulator problems analogous to floating
point.

P

Floating Point Types. ;
Similar difficulties arise with the handling of NUMERIC_ERROR for !
floating point. The actual range of the implemented type is likely o
to exceed the range ~F'LARGE .. F'LARGE due to having a larger
exporient than that guaranteed by Ada. A machine may have
'infinite' values such as those of the IEEE standard [7], in which
case substantial care is necessary to ensure such facilities zare
avoided or used in a portable fashion. For this reason, the values
F'FIRST and F'LAST should be avoided. It must be remembered that
the NUMERIC ERROR exception might never be raised.

e

Explicit use of the type FLOAT should e restricted to small
' sections of cede. It would bte reasonable io assume that FLCAT has
8 5 digits of precision. Of course, some machines may not have any :
» lcating point. Apart from the use as a tool for abstraction, new
types should be introduced when different accuracies are needed.
¥ The use of accuracy constraints in subtypes should only be i
, regarded as a comment, rather than attempting to rely upon ;
sorhisticated cptimization.

A set of machine specific attributes for flcating point is
available which, if used, is unlikely to give portable code. For
tnis reason, these attributes have names beginning with MACHINE .
They are as follows: -

F'MACHINE RADIX. This is the radix used to represent
machine values. To support the Ada model of
floating point properly, it must be a power of 2.
It i3 16 for the IBM 360/370 and 2 for the IEEE i
standard.

: F'MACRINE MANTISSA. This is the mantissa length in :]
radix units. It is at least conceivable that there] p 1
is not a whole number of radix places in the
mantissa, although the value is defined “o be an
integer.

F'MACHINE EMAX. The maxinum exponent value in radix !
units. (So F'MACHINE RADIX *®** F'MACHINE EMAX is

19/

5 -

L}
(8]

approximately :n2 largzsst macrine nunber.)

F'MACHINE EMIN. Tre nminimum exponent value in radix
units,

T'MACHINE_RCUNDZ. A BOOLEAN value which is true only
' if all floating point operations perform true
rounding, such as tnat of the IEEE standard.

F'MACHINE OVZRFLOWS. A BOOLEAN value which is true
only if the NUMERIC ERROR exception is raised
whenever the result of an operation cannot be
represented with the wusual precision due ¢to
exceeding the range of machine values. .
with care, the MACHINE RADIX value can be used %to overcome the
srotliam of 'wobbling precision’ and the attribute
MACHINE OVERFLCWS can be used to provide an alternative coding
which relies upon the NUMERIC_ERROR excepticn. Note that one
cannot easily dJdetermine the largest and smallest positive machine
values due to trne differences between 1's and 2's complement
arithmetic, underflow etc.

Fixed Point Types.

A similar remark aprlies to fixed point about not relying upon
values outside the range -LARGE..LARGE. A program can alsc depend
upon the arithmetic of the machine. With a pure fraction, on a 2's
complement machine, =1,0 is a machine number but 1,0 is not,
whereas neither are machine vaiues on a 1's complement machine.
Although it is highly 1likely that the default value for
ACTUAL DELTA w:il be a power of two, the program should not rely
upon this.

In the same way that one shculd not rely uporn the existance of
floatirg point with a large number of digits, so with fixed point
one shoula not expect very high precision (exceeding 32 bits,
say).

Fixed point types have the attribute FX'MACHINE ROUNDS which is
true only if all the operations perform true rounding.

neferences

r+: W S Brown. "A realistic model of floating point
computation" Mathematical Software III ed. J Rice pp
3u3.360 Academic Press New York 1977.

T2, 4 S Brown. "A simple but realistic nodel of floating

point ccomoutation", Cemguter Science Technical Report
“o. 83, May 1980. Bell Labcratories, Murray Hill, NJ
ST,

ran -

vl % S Brown and S I Feldm=a., "Znvironmental parsaeters and
basic functions for floatini rpoint cemputation'.
Computer S3ciz2nce Technical Report ke. 12, March 1580,
Bell Latorztories, Murray Hill, NJ 07974

[4] J D Ichbiah et al. "Reference Manual for <%he Ada
progranming languaze". Department of vefense,
Washington, July 1032,

(31 J L Blue. "A portable FORTRAN program to find the
Euclidean norm of a vector.™ ACM TCMS Vol4, Nol »p15-23
March 1978.

(6] A J Cody and W Waite. "Software msnual for the
eiementary functions." Prentice-Hall. Englewood Cliffs,
NJ 07632. 1980.

171 "A Prcposed Standard for Binary Floating Point
Arithmetic™ SIGNUM Newslzatter, Octob=r 107G, (New to e

adopted as an IEEE Standard.)

Answers to exercises

Page 5 (section 2)

16#FF# = 15 * 16 &+ 15 = 240 + 15 = 255
UAT.0TH#E2 = H#°07.0# = 4,0 ** 2 L 1.0 = 17.0
34014 = 3.0 ¥ (-1) = 0.33333 (no exact decimal equivalient)

8i0.1# = 8,0 #* (1) = 0.125

16#0,.8# = 3% 16,0 ** (1) = 0.5

16#0.999999...# = 9.9/(16-1) = 3.0/5 = C.5

3. M4 ~~ no underscore after decimal point

44 C.1#2 -~= nc underscore after sharp

16#FF#E-1 —- not integer valued and ro deciral point
3#0.9# —= 9 not a radix character.

Page 7 (section 3)

fa) Next model number above 1.0 is 1643.8)3:+ *
=164 ,0202#

(D) Next mncdel number belcw 1.0 i3 1640, 77774
= €40.FFFFa

(2) The ratio is 2.0 whicn is nhe rzcix.

The rational numcers wnhich canrnot e rerragsenina: exactly are tho:se
with recur-ing tinary representation.

Page

{sertion)

L)

- 37 -

Not nec2ssarily, If F'DIGITS = 14 then F'MANTISSA = 47
G'PIGITS = 7 gives G'MANTISSA = 24,

X = F'LARGE since 1,.0/F'LARGE > F'SMALL and hence does
unaerilow., Of course, trne actual machine may permit larger
smaller values without over/underflow.

Page 1% (section 5)

(R+B}+C=zA+(B+C) 1is not necessarily true since floating point
addition is not associative. For vaiues A, B and C which are model
numbers such that the true sum (and partial sums) are model
numbers, the result will be true.

A+3=B+A 1s ucually true cut is not necessarily so. A+B could be
calculated in the accumulator of the machine and then stored while
B+A is evaluated in the accumulator. The comparison may then fail
if the accumulator gives more precision than that of stored
values.

A+ 12 —- 12 i5 not real, must write A + 12.0
24 * B —— 24 is not real, must write 24.0 * B
C *% 2.0 —- exponent must be integer, hence should be C%%2

Page 18 (section 6)

F'BASE'DIGITS >= F'DIGITS
F'BASE'LARGE >= F'LARGE

Not necessarily, since if tne short form is used (without new).
the compiler is free to choose the hardware type which need not be
the same.

Page 21 (section 7)

(3) MNct necessarliy, but there must be model numbers close to L
and U.

{b) Mo, 1t is required to determine the representation.

(2) Not necessarily, if the actual delta is not a submultiple of
1.0, then 1,0 will not be a model number. The actual delta value
ccuid exceed 1.0.

(d) Trhe range must be static, hence the call of SQRT is not
permitted,

(e) The range 1s a real range and hence snould read "0.0 .. 10.0".
0f) Tne attribute 'DELTA 1is not defined until the end of tne type
delinition and hence cannot se used within the definition.

(section 5,

values of =-ne type always inciude negative vaiues since
numbers can ce negative. These negzative values may cause
EREC* on assizrment. If the si, . of a2 small value is in

. se usec¢ terfore assignment,

(b) There should be no practical lower limit. An implementation is
likely to limit the number of model numbers for a type so that
values can be held in one or two words. Hence if the delta value
is very small, the L and U values should be also.

(¢) Since 'DELTA >= 'ACTUAL_DELTA, the bounds can be expressed in
terms of DELTA (ie the type definition).

(d) In both cases, 0.6 is of type FD and bounded by 76.0/128 ..
77.0/128. The constants 0.1 and 0.2 are Universal Real and in the
first case are held to the relative accuracy of FD ie, 7 bits.
This implies that 0.1 is bounded by an interval of width
1.0/(8%#128) and 0.2 by an interval twice that width.

CASE 1
0.6 bounded by 76.0/128 .. 77.0/128 . '
FD(0.,2%X) bounded by 2.0/128 .. 3.0/128
P=rFD(X*) bounded by 1.0/128 .. 2.0/128 :
FD(0.1*P) bounded by 0.0/128 .. 1.0/128 - : ;
Y bounded by (76.0+2.0+0.0)/128 .. (77.0+3.0+1.0)/128
= 78.0/128 .. 81.0/128
CASE 2
Q=FD(0.1%*X) bounded by 1.0/128 .. 2.0/128
R=Q + 0.2 tounded by 26.0/128 .. 28.0/128
T=FD(R*X) bounded by 2.0/128 .. 3.0/128
Y=T+0.5 bounded by 78.0/128 .. 80.0/128

The effectiveness of nested multiplication increases with the
number of terms, as can be seen from the relative error of the
higher order terms,.

Page 25 (section 9)

{a) Yes, F'DIGITS is Universal Integer. . !
(b) Yes, FX'DELTA is Universal Real.

{c) No, FX'LAST is of type FX.

(d) No, Universal_Integer/Universal Real is not permitted.

/oy

AN

178

hwogroqmy rashyg Jreen N
wuvrwyn M T U

vy) Wwah.s\ R} yduN_

e et ot e

SNYIWON YQV

Lylyad

pPPPF PPPF

CLp I3

quieg wxﬁdowu w0 Po x4

SawIRp uc.n,‘\ RN

ved buyme

u«.g.dOh—l 4—4NY~u

1720

SHMYIWAN Yay

~"

“oN

7-3€FF 4

ﬂwﬂsxa «qu.Jn n%\. dssw

ﬂn:\SJUA LIRS WJKNJQNQQ —_ a.w§0&~ W‘a&sOw&

pwneq V0342 wﬁdoﬂjs - f&o% -‘Ex.,.w
. o~
ool «sf&L* S M =
S e ﬂ/:udx,. ?zﬁw
VZ.:? o+ ¢+ A Z+ 2007 + ﬂ\,Z ﬁ:\:: : no_@idx 3
prgppr s T bunqeoly
- .od.\w FTTREY ﬁﬁqb posni
T T e TN
frog v AL cco+ pvyr ©0S0* frev s < apdwon 3

Pyt

nw(._doh_ _quxﬁ

sy 2NN VY

T

L\ oM

.Aﬂdﬁc wWq SIS, dﬁqv ;

Py vorymagsm wof pasn e sqmenf spreoq

.Wumﬂ NJ Twsciﬂ nwLﬁb n‘oﬁﬂwdo aﬁ.__ﬁﬁﬂ

.wq:?.Sﬁ wg..s\\wa 11°9 SaI3y9viq pwv 1334 *q wand oousjy m

‘P w.ﬁ:an?n ﬁ.zdd@c\ xn_zmxﬂn..ﬁ 9 me_ﬁ..ﬁ dudﬂ

SHNYIWAN YaV

s

- . -~ | $
£+3000079 93979 0000700077 T

000~ 3?5.
939 000 "000 79

m,+w00.o.a~

o W XIS

)79

@fuoL HGS..JwY 5.?3 - mﬂimﬁg 3%

ﬁ«)\pwgku& w‘dﬁbémo wsﬁkv
IWISHIPMIT Y nﬁn.da LT \S:miwwm - wé&ﬂ.dcw

dﬁq W nﬁa«uwd u.tms.if LS% g.ﬁdwoz

SNYIWAN YAl

B kel

P

cel =

&.DQE cw\a 5/ + ‘w: g/

14 ot N.
7 /-3H6h ¥ oz = or-3407 #

4 . am = 10 &7
(w.unz. \ﬂm\-\ = \!. s i

ﬂﬁmﬂ asng 2s1q

A e
#101# C

n

Jéhﬂf C- 7+ (

— a N

uag woyj 43Y 37 sasv

TN

7 80

cyysunh ¥y

TaN

1 8/

_/

AN

: Smﬁi qzw oq

A

us\wﬁﬁf \

SHMYIWAN YAV

TAN

§

Cepsng—ascor 4er e =3 s Id 1

u~r~ X m_

st

28888 NNNE .

\nu_«me@:ﬁ: =! QumIsw . ?ﬁ*L:ﬁ& &

Wil i.: 5 .Zt ..%3 ety

>

= L&hﬁ&;%&ua o

«S.ﬂw us & 3 % A\ ngﬁﬁflﬁwwdn %_A - W
* .sm.nmﬁﬁ_ * <« .
A o c— |

‘_dcvﬁ‘ B ANERULRU AT Y '

i

SMPINON vay !
-— - - meem — - |w\m - .ix - R - PR o+ — ——— e ———— A & - C e - - - }~
N : N

=

e -

“ON

g H# U

Am.&a; mo yavq 3¢ wézmgqv

Abof 8 (-7 H#44 4 THI10"# T

s Buagpeb o g

R.\S:d\,\ an\ 3y 7 _wn:\\, # bbbbhb @ # U s!

#iloy & #ia#e g3 #iarT # 7

vwraap wi 259Y] U S

¢ |

SasvIyax]

Puaror st 17yM

aad S

w:~d> wz_\\ﬁ

444 # 91

m:~ YA ud.:,)

s YyIWON Yaly

W‘.“
=
.

-

NN
IR

.nv\

\.l\t!\l'l\l‘ ‘I"/
< fa&dg 3 kQ

——— pa A;%m~uwumm\\

~

/A/ /SJJ. eﬂw@_q

2403
R

weﬁ.@).daka uo
S ?2 W

f\u\,uo.t ~—

Sp E‘BA SN

Bapan S

m*\c:j cm. .\3:,4%@% n.éﬁ_i:: ~@10: .

WHC;J-M*JQJ_%%Q d\.»~

swmva prmq svaqua [spow b papme AT -

wxen‘cs:: NQTUE — mﬁ_uc&w Ems mo$~<> T aaﬁﬁm

D

|
pacra v S22 7 W33 M1 wﬁtut:u - amsSIw

waLﬁu J7a% %0 nowwgouogm v

eyyrvam Yy

-

Sveq wmnu Hﬁnbs

S Ll wyIvw

SHMYIWON Yay

TN

T: A: *.L La\) _usﬁu uA ow‘v

’

m~€><®~§ h\:qoc: 9) w.ti_di...r .:,:,d? ﬂ aw_;m
A,\ﬁ.\sj: ~£BE v \\/nw \
A 7 « +f
~é>3‘~:H ~Q?DZ da;ow_:._:. d::_c_
| —

A VIUIN yuy

| *

oo e i . revr——

b o . o ‘ “Ta Y
o (i oy g by v pemd)
spravag 7
&N\au u.%&esw,\w.as (S.IafuLu g;%.smm ‘ N A‘_\u_.W
%d\:é,\i iae — — M .

syyiIwoNn Yay
e e e R e e —-

T

e ———— e e~ e

s¢ h\xiﬁ J2) wa\u..wwqu.u

4

.\\%\A\&w 0w

. Nvéiw‘ M A\\ 7<) \%h,.o*ﬁi \ﬁuﬂem

[By
%Ji.% m&w.m&«& _:tw W w~:£:§r? wfun mx,;w :.

SLN\ 174 Nr\\» \“\Wk\—a‘:} v\
: ! N ,.w uu;\.
\w’w>amd— . “ _

v 9) ﬁ.;«f:.~ m:_::.., At VAT

4

“

ﬁ/.d:m.,vov

mf_::o,. Jw

&.:\f 3\& wﬁiisA _:.f.mt: ﬁ.:—g\q

¢ J3Ls

n,v\r.n/,czﬁ 1 _P.;.._

T

ﬂbun./is:. awm 495—‘

CVNNINN val,

IdN

3 ,SL:. pasvq an.inx_rr\:v

.Au«ca\te.\ Juasin
geh ' Q+T -

Tug\ *a\ 3q 9 .<3_=.~ L?::. ae&i&zm

g = .
nmqq\na mﬂq:ﬁ (7) wc\\A.QC ®c~ « wq_%»:,‘_

AN munc\.:tc HT f..mﬁ NGS .Gm.t nw\,..% «S,.ﬁ.:..%% sLﬂ.\—\.
Q«.&EL‘Q dmech w«&«:m :_w..w

l l

7 [erTarate] *0 +

/3

.w_\.sn_ m&_wsoﬁ— »a* w3£§3\< .-m_uov/_

SNYIWIN YaYy

“AD-A124- 012 USING SELECTED FEATURES OF ADA: A COLLECTION OF PAPERS 3/3
(U) BATTELLE COLUMBUS LABS OH N HABERMAN ET AL.
. 09 NOV 82 DAAG29-76-D-0100
UNCLASSIFIED F/G 9/2 NL

12

=
2 s

FEEE
“EF

I(FEEEFE EE E
=

N
i

MEE

a—
==
___—-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

izt

*\) “TAN
v - | g
NoSd3 4 = (9/-) +# O°C -~
a 3nreqw kji\:: 33.: {xav PWr g V22 ™M43q Lsu
I2M7,4 = [car a'r - 898+ O =
g9 34Ul o g T
w.~ ,SA_S\:I.\Q%UE wwmﬂéw
TTHHS, 4T (9-) #* ©°C
s$! 9g0< Sn_.:\:: “ﬁgoi umu:dcsw
89= XWW3 4 89 "~ 89— S V@es..:p ¢:m§%m

=% Dy

Li= Y SSILNYW (3
| nSa\L Pds.ﬁ 99/ = Ce'S ¥6S mwﬁzmz

S =Su9qd m..m W..._.Wd._u s1 4 &qu ;

u.m £dxw

SMNYIWAN YaY

. e e e —— ———— 4= = > - ot v AR em T el s e amc e —

v

TN

.%tudxd 13@% |
NV .\a_}s: ﬁ\ubi » si ».43} Y™ mﬂak.ﬁw .u ﬂ“a:eo.w

~\..~>§.wsn. ~&~..u£ sig v) Jsnw §\§>//

. — d

\ né‘ﬁ.: _Q*-DE

‘ b xﬁ/ ﬂj_}‘:s u&fsi |

_ ltAZs 19 ﬁzdz
gror) Jo e ._

spay] fo warsvar w)

SHYIWON YAY

%N

1920

Amﬁoz 3.ww
Byvssarau i m,%ﬁbu I
u\.& e pev v Xuﬁ ST™7A 11"ws

MAN%* a + Ak QV.FQQW =2 X
“ulid&m

(¢ 1vws 4 \5\ Q0 =X

A‘ﬁ,Id L) w?ﬁw
WS 4 F 0 00 A [33:_3“_ ampu

AT R pw
0'a T ITWWS 4~ WU SpM 1?P°W
77Wws 4 > X Qi\ vapu(

synyuon yavy

W

P o

§ yoyuas

.wm\\..w .\,?«t_%ﬁml&s *5 u\ns&» *q 3\5
NIYALSNT) I :,@2 mq\:\%\, HEE..N

*\d WINIAWT)

A%d\if_\.s \@\nu..c ﬁ:\u :,;‘\otts umqé\w .
wcﬁnswﬁép\ m& \34?9& EY2d wm‘:\\s, . mﬁ:u*:.ﬁ. ()

pasies ! vorydrr Jaya TNNIWON

§\$< .\Qs.wﬁu wa w\yukﬂ&
Wé ﬁgéﬁ\kw N%&\t\ c) v:Ah A«.w

“SRC_G wo) n%éﬁ stzw

q)

77179 YU SAMNI (2

.)
. %\,\}\Qﬁ\s h.\s.‘»:\dbm ou u)dq ww@.tql < —x* *\:f

,\Q:QAX ww3~d> .%ezﬁs.a ~@_uo§ w&.ﬁis.ﬁ a1

%Q Fn..\:.s 7 Q\u wo ¢ ﬁ:\v ~ Wm_ﬁw w1 04330

MO A0

A
™N
~

SNVINON YQY

IaN

/-'/,/

sw ..loux 3 (?)

\V.|
AA.. mquﬁwE:kG& ﬁm 104 3q M0)

.m&.\ﬁqk\w;\. o m.S.:LLSxa IY7NSUI w.‘Q:QSEQ ._JCON €]

Jaunu ey mﬁ_iwuxw (v

pasimt ¥

o wn3yv Q..T.u me WY

m.weww %\ﬁqn 93%30& *

mza w&%&&k qw;u..ﬁ ﬁqﬁwoke% NV wx”:.ﬁruxm

Joyyu3 UNYyLSVA) U F02¥37IRBWAN

SMYIWAN YAy

e e e e te e aemem v e e - rmtiate v e e e e —

R

“TeN

bl "

nmLPA rg »m—\. w@..u&suud

asn waqi 9 @q&lﬁe N w,»u:algiALEH

.‘.\&A‘NC.\ SO \Q

nvo7sdd 4 =< Nosd3d (4S

R X4 = XyW 3, 4S

TWUS 4 = TS (28
YSSUNEW (4 =7 gSSILNYW (4S IWIY
rawmog TH w.m_\c,v gggarm

ﬁmusﬁt n%a__t:: ,\mwnE %Q wm mlsi g\am.f\éz .
N m.ﬁ_w,.qu .ﬁf&téu mgcsuuu 7! .

(svoe4 =>)

(Barrr 2wg-vm)
spuneq a3 \6% 243, u.:;&:nﬂ \ﬂ..:s ué&ﬁ&d uﬂfam °
ﬂww;.\?? &3:.1..3\:.\. w) Ja Awo:“#ﬁsw ﬁwis;v
ww«\:ﬂ us._a& mes“_sol‘ %0 wwa;..*Jsm

SHIYIWON VY

e me e R R e e e em e w .. - -

A.wf\:» %a 4.3 v w%%sm:qv

N 3.0\%\223 X\Q.N s 30)7 Jau

7@%&@5 Pu ey X vl u\.?«\ X unwm,\a\ oY s1 7YM

c YSSIUNYW (D £ T = VPSSUINVH, 4 S3°p
S, P$T=5L21¢ d
17 Y7o sodhy ued méﬁi amy wanb)

SasNAN]

SHMIFUCN YAy

JaN

k
SWarg _w,.s\?sﬁ dﬁ SNS \r\uﬁsﬁw 3&0% wé&é&%\w asiy] Y I
F
A w,\dr‘.c..&:b%uﬁw T £ % X ..l.w ,

. EVEIL IR
: m :
oA YOS (x) sl :
| 1

WIS A A \ X .
Xb.seu,.l..u\:é A % X ,
Sb.rwuad*&:w \ﬁ - X ¥
Wy ppY A+ X

:Wﬂn w@:&&q X - : .w
gi&s&«.—o au X + f
1yatd T A X |
Swn .‘:smn\Q L:..oa Wz«_\.?a; ﬂm :W.%m_u v/ﬁ, .

SNYIWAN YAV

— LT T I T T T T T Tt T e e 2N
>

i - |

(TS < MO ?)
NaTISdI 4+ 0 T 07 m@iﬁ.& \éeas_ w \;éq&
s, d <A 9t =X A+ X
¢ odvxg
3:@ ¢ drys
33\@ N..“_ﬁw

13 £ 100000 #9 F gdddd’o # U

g Y4443 g # 9
,Sﬁis,.: %wwoi v s %

£ Facoc 13t 9

Yotbl g # 9/ 7 HALbbhIO# 9 [PANHW japow Wy

0al =k PV a=X MM AkxX
c uliaxw

o% w%s& s1gprsas UpTUH rugwhacw) w e

\%ﬁxd:\&\uus. a‘% S SV w&&:_:: 3.%0& uM 2?7(, ﬁom_..

ST q o't = A wﬂ_kc a6l=X ,\\:.5 \/\X
S=5u91q, 4 4T LY « «1
: EdeW

anyINan Vay

S .
e e
o g

a°l o} ¢§1<>.§~3 o #+* X

(x& x) /a1 ?33,,,.{\.& (z-) r* X

vex o papavbs Tex X
oyrapdeapr paped by el
AEN.GE*Q xm.n&& rJ:e\ # % (éxmib ﬁ«.& B Y nfé
pymsade apmqvaved <3

SNYIWON Yay

X34

Pt i

"~

YoII3IT2NYIWAN 2

ﬁms._*iq ;mtdf& E: Lcu.

profap ooy

xdvx » s J1300

s
«ﬂx a7)

Jrsas NI
e (9

L..A%FWGS\% gk! wﬁ:\w&wﬁ n:.zwa

TS.EQ&Q quzw \o w\e_ﬁﬂ._ﬁ TTUE e.uw?wua
m.?o.wdgén*) ~\5 ﬁ.S « a,: ° Q

SNYIVOIN YV

Lk

TN

<z ‘N

0z k% D
€ % T M
7+ Y
¢ m@?é% I A bunam 5147y M
m“ v+de = < TQ
s (o) +y - I+(urv) S7Q

<

.«FqQII 'o'Y v

ﬁQW,JULbX‘w

|

nwm. R - _.a,lz ”
\ — T mifr—d m
XJJJ,J,&&&?\&_ Wwtn Tcéo 3p \gt?_ ﬁuw Addugy _
* »u?..ﬂ.&
NV SAwnu Sfo.v)
. a7
1Yyo14 TINAT ",
<
1yY973 ‘f o A ,
- M
_ L YO TLYoHS 1 L A,.. | j
T w.ﬁwJu
A/I .
A/T |
éﬂwﬁ sadhy qwd |
P N%/) .
~ I m,n\.ﬂdnl\ STQ
anyian ¢y

LA AR Al

(reon % PPe) - avoeprey

A-I
wce_n.usm,.u
suUq,d
I]
. N
<
SLP1q,d < SLIYY, IsYL 4 25Wn2) T d
cLoig, IWY, 4 = SUN yord ¢ .
Saququyy pesn oy w2 U Taspe, odby wwepsiy .
L, HI1Y i pamvap aq pree st 4
adhy v ﬁaeﬁg f W
tq sphp wporg W 4 »dby |
of ey s
mﬂ w#muu DU | ULW@ ¢

SNYIWON YAy

R 7 ON
TEN

DTREL S (10 =L

h\.&.wq\m o) \QE.:E\BL Ly qu.:m eG.L.«:,,T;Lw &.Ld*zowt%t <

AZ A 3*& .)ZN.. =7 JL.J.*;E => g

pLeraQTTRaLY, X3 * ulu:_\.é K :m.,w

PL13IQ, X4 => WLILTIWALY AN

.?hmﬁ..ieq?xu *o 21..:35 tnié vy svaqwnu 1o

2S¢ XS 1satd XS
lﬂ _\Ill CIREL S|
in - w%ﬁ.\._

7 wwsf A 4239 st X4

wmo:.dl.l aﬁﬁﬂ *f.do& tux..u

e e e e o SNYIWAN YaY

L%

"

Terw

sy STV 77290 sv pafrasy

<

\ws\.#{mg\ Q@‘d& 2] -wo

M
asm 3JIS, ALISNAL N/ .&\

nNC O . oLy
- A LISN3LN{ 3%
(osn HLI3Q IYorx, us
mtSwfrtuzmb «?
A LISNILANI ¢

<8 .2\0 2zl

Jﬁxd 2y P W

7 u%i& mﬁ\o.\ dimw s

‘awy Y700y]

N vz Sgs\uu&ﬁue_w §~§L§YLZ v

WL1agq oLy,

¥

*A. woc:duu

ﬁzu\.ow m
.33 34&» ~%:s:,_

1o v mia 7y vy :m.#moﬁ_

|

SO

o ;,.\L
TIRELY

.w§u% \\ENC,* 3;\ ﬁww: S:.Qimgww«a_wu

.‘LKSO% mi_‘«\ﬂbu%\ NY_. .d_ cr\:

14N

A\% 9 wy) qémsﬁc %»wbi nv N

@05

SHuIHGN Yay

mx:.\‘ n/,.w \6—»

Sﬁﬁd\gnoﬁn\z *Sm,\v\u\cm w\éa\ Qo: %53\. .T.@ fxdu ;ugjﬂs\mimlilﬁ

.WWO:JJ:W
w?.m 0\ 2\»\\@ .wfon\ \o&.:*.n,x \qw,)\e\a\d QA woo M:.\S,‘n:e nuuk:uuQ.

-

S0t

pi13e 1ALy 4 ¥ ((— SLEd A Z)
4 3\3 \o ¥aq Wi \m\eo& \?umx&\) Wg;:._m

\3:;\.:: %A\&Qc&
\Q?\m.us\: wyp M1 nhﬂ N\ »3 wiry w\u .q;\\.w> \Qﬁmﬁ% - ntm._w
4 wta.wa\sw\q«\\c T4 &o] - i3 7poLdy 3
5‘\3\3\“ vqxfa,...u\ea\f w %\. N\:&Q.~ .w\at - o:.hwﬂ.“—

mwQ;C\ L:.;oa me.,u *0 ww“xfowuq

snyIwan vyay

by h)

sead u‘%sdu aa! J:w\b st 43 (47

fpi13d 444 90 p
Sar ©* 0 2bwns 10) st 34 ¥ (2)
‘(o) Lygs ~ 97 2bwos 1070 MipPr ' W &f (p)
erR mcéq: A._ *643 .ﬂ,
. . Y

J A Jape 7 af " 'm>al>7 _:»‘ ()
aq JMwysHI dhumy vy v (0

§ P
()

| g svaquov gpaw M 7 ' MY

AZ..N 2'7wh) nﬁ S:m_u S1 Xn_ u%ﬁﬂ

W@M,ucwxm

suyawan yay

Ppoa Ty JPpLIICT Y,
?\s@ popne @siap

oA YIS
oy gy o gt

Sblux:* qvs
w 'ppy
whis abwnys

Fn..«d&o‘.u au

%&:d&mz .w)ﬁa\.w.\é

/X
(x)s3¥
ﬁ T £ X
(x*x 1T
A-X
A +X
X -
X\T

we&:y\.ﬁéo_o Q:..QA me.u

Sw\ﬁ?\ o\ \@_\\m\.:& mq:\e> Q_c.mt\)

2kl
yafa Cuwn T

.K,.w Qﬂ:a\,. amﬁmz

‘x4 ‘A X

SNYININ YAy

gg N
\ TN .

‘yoyy2 - NYIWAN 2SR I

.w\@ \uﬁdééké L7/ xa mws,s_ 7] m\.\i\.s &:NS,.W,%Z,% ..n;m.JS\R_Q
.%0@.?&-&7:«@.&2&& Isios .:,.3

w.\aw \R\:u:& wi ¥y] *G 2hvwys Iy ISP uwx\%\, Q\«SE T s,:ﬁm\,:@

2 sp spuwmaqIwwe -~ DX+ ({f0) <0 d ¢ M »
N
3u/a 988 32/ NRST f [73p7wmeq -- ‘Xay =+ 4 7
%Q\QN*G .o mﬂ,\o.qém w; \:\?33 - mw\x a2 4 S A

. 4
\:

szifashrs T BU/otTkT mw papumoq-- I {al =i 4

(sz1/07 = BOICTALY 4)

umgwypvdivay we S ~\:\SX~A~ NUNRY) *0 S :L Wy X g

SOMM AN HAY

]
Sw7) w7 & 7 \3% \Q

\W&Q\\QN’UQ\ N.N.N .*Q wwN\S(.. \4\3%3 QJ\N Wh_NAQ ambw;.wéu.rwﬁ*Q NLquO\Th(Qw
wa\\mw ,m.duu\n\xu Qw PEQ&Q@ ww.s\ wmuzﬁgwb .‘L

.\ww(.,u %uw#w\,..:i %0 mu 194772007 .\mé m\uﬁe,wiix

poxq g S
Cop g/z4 73/14 19w BP9) Tyrll fo qrrsay
(cdx1) 9 = 19 |

@N.:ww,r
Q.\u *ﬂ Amo\\.,..uw w\\:\m. w\.\w Uﬂx\m ox \uwc,as\xz S1 MF AL :L;B.L u._t)

27C

%\\qu,iéwn \ch,.;«:t\“w\& #A ~a=:dw
w0y SIAW pwv #..oLdE&...Q&E wc .\N:n.t \S%\ tw\umm: wa.ﬁn,
N
wSQGSgQLQ wi&umw; ") 73 XI-
| ued X

—— - . SMYIWaN Yaly

- ,.. - ﬁu

‘qu\h.w \Qﬁw*i

\N: YA 47/ 74 Q\ .wm:.\v V7 \Q.m&:H w&«tue.ﬁ wn :%L&SLQ
Jpasies 9 Py e YodyI~INIYYLS Vo) DN

0 = éwmmrkxd Fen
e

¢ ooo-coa-g - GIQ"0Aq"E =T

Jpvajswu 3\._ gk} @éug =) u:ﬁﬁ».s\@ T wé.mny&u& ey

‘SIw \E\u\\tk 2y uélﬁ»&q .wﬁw& 1 u,gijc.
MY w\\:\x@@&u n\?. ﬁosﬁ m(cﬁmwto_xd VY nsEmm,.tmxd \SQ.EN]
ﬂﬂ \wwﬁx\&w& w\b‘m o \w&»\\;sj mN.*.Z.,_QEH

\Q@m\‘rH %\Ggm_ :\: O%h& - %A:Q._: s&@ﬁ_:H
JP3Y Jos+anwg wa - ¥4 2y
mu \\:\Q.ﬁ.\ dugmnw vy *3 wa;.& b Sl L._:J\f) _

MX@M way

SNYIWON QY

Tl
H\ \Q wy = V\M g. ™ Q\S %_Ng \.Q'N
J727 SV Cs.ﬁcm% \\néié&é
S(og)soy = JuIII o Feglf
Sz ax 0°F = JuyIsUry dXd]
mQ;N\Q.Q\ =3 N:\insa T M 4
‘2 aa) = gupgswry ¥ MM N

Cral ¢ 05 Junjsw?y © L7014

Cop # Qi =i JUMISWI T L10W

b
L)

‘og v T =/ Jwnaswry FL1OW
SHeg — =: Fuuwisw) : IIN
oyl + =i Jwnisway snd

0'8 ~ @9 =: IS 9089

<

[23

Sog + Q7 =i UtV :Qay

‘\SQL \&«wﬁ\se .\FJ\% wgoA *0 mfﬁmsmcu w»ﬂ:& woJiug .ﬁ.uu& Hsmca&;:

S —— . snyaIwon Y¥av

€N | :
(€ Tk

%w&i-;f 3@ .._a&\..dxw

EN VA \“:% .ﬁess.d_u rXUAYY] \.»04 w.~ wd.&« jm.&».:ﬁ .T de

(‘cl/ + X+ 1o X+ (fal + 0l

(%d :X) 20 20w) PYM

273

prrag-tway x4 /1 ()
170 ~ 1sy7 %4 (?)
oo/ / W3, X4 (¥

i+ suang,d)

O. msfmw%mxw \Smﬁw wén:o:o% ™ w,_q

S25'2v3aX]J

snyIwon yat

“1aN

Spvjop :«% JP pTpEYys q yreys 1854\&\2 2 PHY
“qyay wmas (yoLIdA X] WYeN §$o§¢

..fbiug% *o Snidd*ﬁukw
‘qpzy wnge (1H2Y IX) 1308 WY

S ED" %QAAV u%sﬁ ywouth wE,E sl YoL723A Q:J

mo;/ wﬂm.ﬁ st TY3IY w&ﬁﬂ

2%

S

wZ,mw.uL N Ly 'y Eow,CaLcSw ’

Ed\f..vamﬂ% ﬁ_.sts\& J@ﬁa \T d@i&xm o
05\%_96\ ?u.& yapun pnv °3 PIVYH .

— s g

46_.1W\ ,S% s,\ttm\q s M

AR

SHYINON YV

.

WSNXSS_ WOISHIAWD) -

%Nﬂrﬂiet\hwﬁ 136\:@.09 L4 IS -~
H(CYCRUYERLEE)) .Ewww LYOS = W3Y Fwrisw) : yuI1Y

8%«?8 NA .wuw%wed\du 2q wo) - -

‘e 8 3DYYT MY =° W3 (S FIE IR PR LYY

Vaqunu [Fpouw -~ [(jg3-) #* 07 =i W3 Junysws ¢ 1€

ST/ (1+ XYWI WY) =i Jwnswr ¢ tad . w
wﬁmidxw 1

dTQ Wi wg.wmdsm$¢ _d,.&.d: ﬁA dggu wJ w) w,.&;_;

&u@# E—.:aoamw q

.hﬁudx.w [34793 ?q 23 wd.dd\ Iwnsg Savy

SHYIWAN YAY

e .

Q \\ il .u—ﬂoz

a\évwa Q7w yrury 7yp7 Mty m\&hw&::ﬂ e ,S&S:\.ss 777)

&

SARLA %
iy v arculf (uqsmm g yamp) N\H&qﬁ you¥3 UNIBIISNG) T

/B wocwoclma W7 YSSUNYW HEY A1 7 > LSY7, HADIIN! £ “vaxaeayy.

n\.e N:&

[Yo¥AT UMY YL NO) AT
Vay) HSSUNW WY £ # T < N %

‘NIHNIT X = ¥3VILNI JWRISVO) 1 N

P am 2q ppes oy 2L

SNYIWAN Yaly

oo o ysu hrwemaum e ppe
e Fo ¥ ¥

A~*w.~t&\ + TN VY w.&&qw

saymprayo0 SML .//,
(2xn (b)) o) 140S £ 214y W
] el

[72wq w02 T7f w\.,.\ 9 \Sﬁk\w:\\ wo swny] wwe\ma:\.&*t
.mr&\ \S«:\Q\. w%«.w\ \\.@Q e:w:%?t \\N.S).n
W\Q ~0 HW..\QX\WM MQ Swr»s W.\agaﬂsﬂ N@(\N ﬂ@ﬁ\!%ﬁdd i&t@%&t

gHyyIWaN VY

.

TN

(fop= 0] sopuquie Jroprodap= 2z oS)

7 e §

w\\ﬁw w&ﬁ!&gm\ %3& K_\ dn:\w\:b,v duwe WN:Q e

%L,.\J,m\dm\nw gbﬁn&i\ \K:wnﬁ Qw %uwdi &wcd

muwi oA P

IOXVT, asyy WIY TN 307,747

o vc\@ Ty T %ﬁ sojqNHY

W n pped sw.x%\a Y SoMquRY T3y bunen *o praisvl

SHOIYIWON VY

Fe»-

‘wwu.kv(w\.v,. oy - uﬁq\s \Q:d ﬁ/ﬂo,v i K@.x.ﬁ sl S.YE.B@\Q

Y+ X k(ar X & (O+ Xx£q)) =A

217

\mx\w% wm &wmimﬂn\uw\xf \stnw\‘ .EQ &%Sa(ﬁ%d .WS‘JQ Mo

ARASG %Sd:&n» 2y e svaf |V 3_,.\% M1} 9V JOA *0 peR™ S L

SSAR XN + Taa X 2D+ XEgA Y =L
wowas sacwd mﬂ ﬁf«&:«&&a 2q w0 w:.n.tsa% B oousS

#oxdtu_xe&\mQ .*:,go& Wwv.:u

SYIWaAN Yay

——— e

e "1l

.\A _
(2¢ (®979 99999 ¢ -
(9% (2v0%8 “rseEl 0 + .

(9 # (aa%29 292a°d ~ X
(9 * 24899 ~99daa '0) ¥4 M
J)yd
)) ¥4
J) ¥d
)ruard = A
../..S..k‘)»zn.x&mq
f1gorg A

wfnou\w-&w k—\ .\eaispd %SJ?X - ¢ d4:5)
2 \G .\&Sk \:tmu\ md:mﬁue% ﬁwuﬁ:& P a4 wans)

SHOYIWAN YAV

A 3

Y o .

S

.%‘3.3.&: \q ~rs bm&wu P 3179 33AW0) *

X@m‘&&;n&\\c *s.%k \w««% S8 Am
unJIrpa w%__\g nS&T& (7
3@@\ Qop Jou %@Sz%& oy (¢
sadp

L d WOy WOD

Sy “sop raf Ty pp - wbis s394 :;X.ts@q

1ypd NI HI)

agigsmpn vo el yony fo asy
‘SorTNIS PW2
W.I\Q.C. winjas AkQQ.E ‘X \ sa? <$.£8:i\
Lyar{ wms A._.QQ.E iX) NIS Xa:qgg.*.

ﬂ.~ WQ.V...Z\W Wm.ﬂv‘udnwv

s e s et

23/

SHYIWIN YaY

Tk

!

'
i

A wS.:»duq sanasad s wmywepp squmit T 2sm)

.«NQ\Q.\

(9T S4L68 SESTT TSI TE T

(za) #rcT & LA

[
¢

SHSSIANW a4 =

: JuDySwId: Id MQTING

f—
-~

T4 = wg\ww.&uu“ TN Id

<. wgwn:bw : Id
"w:naié\u\u&w X.A:SE *.o nwlidxw

w—w:&,. s UN(2\\5

=; w‘;@\w W) - w.

w1 TP Jrow %,\q \6% e wL\G »ucﬁz.“m

1ol

22>

P EULLA AL

- e - o = - e

-

TN

..wlmmﬁ.wwh £ €519.79920] "h89b g~ =¢ wnIsuaI iz 2
ooy 48 =i Tems 19

m:txcus dwyIpw wvyy W o) I = 7I +1D CaCh AN

“~

2ok NX |A~x +Tu* NX - _xg\ =2

ﬁA aumy S sh).

\uwu‘a&gd %,\dq\x&w:s: %m\.nao\ AN

‘..R yﬂt\xv%on¢§m_|§ﬂ£<.ﬂ - X = n_
o.wu QL\

et =0 o pavnby

SsNYyIWaAN Yay

o g st s s .

.-

i AN
Q B
A\Cﬂ:& n\;?d: Vaw_.gu...\f?_twcf,\ﬁ # \w._;.«“.zé :»L . :.x.fd.sw

.% e
TYONNITINIPNISNO) asw 3\@
(.w\.ﬂ \.\N -> U *,:Nw.
Wy as > o .hv. mww

Wy Tg => Y ,T&» N

—_— H

M3y Hy => 9 %
YoyuIULNIYYLS NO) 204
.w\bﬁ \qu:\%.wy V\.‘% Qw SQJS 2 (&LLQ

pmmim 7y <1 ey IT

L@,\\.‘ksﬁu ec..n\: ﬁguw s(ru;d:‘,..(o.&\ko «5@«« \\G 5\\ w1 Tww.\awc
n§\ \\ »2 Wy .Qm‘ A\ws_af‘sﬁdw 1yar4 ? »gsijunw N., wum.w
K\J.Lé%chsw Ndcr.:.d .ﬁ._uiaw

gy uWaN VeV

aicamtan

|

A

e S ——— s et - e o gt

‘840™XF1gWA P¥I

X314000) WD (XTW0) A X] WS . oy

X3TIW) W (X2WO) A X)Wt wnpwny
X371 W0) wempy (374U A X) - v jpwny
‘X31410) gy Axw.{tow 2A .xw . gIocs...*\
CWzy WnTR (X3T4W0) 1x) suY ngrmy
X31gw0y wrqn (X374War: X) -, ompwn

.«mcs‘t pva
Iy w3y .
wtsww« Sl XFT14WD w«;m

Sl SS9 XF14lWa) dndv.udn_

$¢> .w#m% SIRT'ED! .wa:.ﬁ
swawab

SdWmIML vno«\ﬁ‘&. \gg% 5* Jct&ﬁ&mq .
19 %0 ﬂﬁw&.&:»% ﬁ.bexw ’
@Lf s ﬂ:a My e

mu,_é,sm T m\%&cxw

TaN

b
.l/
1

SNYIWIN Yaly

TAN

Cb,t& 1
| z
s
T
 farn = X3TJWa) M ~
ﬁ <b.£d\£L.L~3s.. X374 149) AN «. NZ
| f(arp g =z X3HI AT

mUI\/i sV

umsﬁudu
5 240

- st AW
() $40 %3100 °] LA

to sphp

woobary vasy)

]

SNFIWON vy

o,

